se ha leído el artículo
array:23 [ "pii" => "S0211699523000103" "issn" => "02116995" "doi" => "10.1016/j.nefro.2023.01.009" "estado" => "S300" "fechaPublicacion" => "2023-12-01" "aid" => "1137" "copyright" => "Sociedad Española de Nefrología" "copyrightAnyo" => "2023" "documento" => "article" "crossmark" => 0 "subdocumento" => "fla" "cita" => "Nefrologia. 2023;43:8-20" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:18 [ "pii" => "S0211699523000322" "issn" => "02116995" "doi" => "10.1016/j.nefro.2023.02.005" "estado" => "S300" "fechaPublicacion" => "2023-12-01" "aid" => "1145" "copyright" => "Sociedad Española de Nefrología" "documento" => "article" "crossmark" => 0 "subdocumento" => "fla" "cita" => "Nefrologia. 2023;43:21-31" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Upregulation of miR-200a improves ureteral obstruction-induced renal fibrosis via GAB1/Wnt/β-catenin signaling" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "21" "paginaFinal" => "31" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "La regulación positiva de miR-200a mejora la fibrosis renal inducida por obstrucción ureteral a través de la señalización GAB1/ Wnt / β-catenin" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 2966 "Ancho" => 3335 "Tamanyo" => 742929 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">The regulation mechanism of miR-200a to TGF-β1-induced EMT and ECM deposition in HK-2 cells. TGF-β1-induced HK-2 cells were co-transfected miR-200a mimics with or without GAB1 overexpression vector. At 48<span class="elsevierStyleHsp" style=""></span>h after transfection, (A) GAB1 gene expression was analyzed utilizing qRT-PCR. (B) Western blot was accomplished to ensure the expression level of GAB1 protein. (C–F) qRT-PCR was implemented to ensure the expression levels of Collagen I, N-cadherin, α-SMA, and E-cadherin genes in the cells. (G) The ECM-related proteins, Collagen and α-SMA, and the EMT-related markers, N-cadherin and E-cadherin, expression were confirmed utilizing Western blot. (H) The activation of Wnt/β-catenin signaling pathway was analyzed through examining the phosphorylation levels of GSK3β and β-catenin by Western blot.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "XuKai Liu, GeXin Liu, YuZhen Tan, Pan Liu, Le Li" "autores" => array:5 [ 0 => array:2 [ "nombre" => "XuKai" "apellidos" => "Liu" ] 1 => array:2 [ "nombre" => "GeXin" "apellidos" => "Liu" ] 2 => array:2 [ "nombre" => "YuZhen" "apellidos" => "Tan" ] 3 => array:2 [ "nombre" => "Pan" "apellidos" => "Liu" ] 4 => array:2 [ "nombre" => "Le" "apellidos" => "Li" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0211699523000322?idApp=UINPBA000064" "url" => "/02116995/00000043000000S1/v1_202312180955/S0211699523000322/v1_202312180955/en/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S0211699523000425" "issn" => "02116995" "doi" => "10.1016/j.nefro.2023.03.004" "estado" => "S300" "fechaPublicacion" => "2023-12-01" "aid" => "1155" "copyright" => "Sociedad Española de Nefrología" "documento" => "article" "crossmark" => 0 "subdocumento" => "ssu" "cita" => "Nefrologia. 2023;43:1-7" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Brief review</span>" "titulo" => "Renal manifestations in adults with mitochondrial disease from the mtDNA m.3243A>G pathogenic variant" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "1" "paginaFinal" => "7" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Manifestaciones renales en adultos con enfermedad mitocondrial por la variante patógena mtDNA m.3243A>G" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Filipa Ferreira, Clara Gonçalves Bacelar, Pedro Lisboa-Gonçalves, Núria Paulo, Rita Quental, Ana Teresa Nunes, Roberto Silva, Isabel Tavares" "autores" => array:8 [ 0 => array:2 [ "nombre" => "Filipa" "apellidos" => "Ferreira" ] 1 => array:2 [ "nombre" => "Clara" "apellidos" => "Gonçalves Bacelar" ] 2 => array:2 [ "nombre" => "Pedro" "apellidos" => "Lisboa-Gonçalves" ] 3 => array:2 [ "nombre" => "Núria" "apellidos" => "Paulo" ] 4 => array:2 [ "nombre" => "Rita" "apellidos" => "Quental" ] 5 => array:2 [ "nombre" => "Ana Teresa" "apellidos" => "Nunes" ] 6 => array:2 [ "nombre" => "Roberto" "apellidos" => "Silva" ] 7 => array:2 [ "nombre" => "Isabel" "apellidos" => "Tavares" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0211699523000425?idApp=UINPBA000064" "url" => "/02116995/00000043000000S1/v1_202312180955/S0211699523000425/v1_202312180955/en/main.assets" ] "en" => array:21 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "MicroRNA-322-5p promotes lipopolysaccharide-induced acute kidney injury mouse models and mouse primary proximal renal tubular epithelial cell injury by regulating T-box transcription factor 21/mitogen-activated protein kinase/extracellular signal-related kinase axis" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "8" "paginaFinal" => "20" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Xiaobing Ji, Xiaodong Liu, Xiangxiang Li, Xin Du, Li Fan" "autores" => array:5 [ 0 => array:3 [ "nombre" => "Xiaobing" "apellidos" => "Ji" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "Xiaodong" "apellidos" => "Liu" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 2 => array:3 [ "nombre" => "Xiangxiang" "apellidos" => "Li" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 3 => array:3 [ "nombre" => "Xin" "apellidos" => "Du" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 4 => array:4 [ "nombre" => "Li" "apellidos" => "Fan" "email" => array:1 [ 0 => "fanlisiyuan@163.com" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Department of Nephrology, The Second People's Hospital of Lianyungang,Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222023, Jiangsu, China" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Department of Nephrology, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing 210039, Jiangsu, China" "etiqueta" => "c" "identificador" => "aff0015" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author</span>." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "MicroRNA-322-5p promueve en ratones los modelos de insuficiencia renal aguda inducidos por lipopolisacáridos y la lesión de las células epiteliales del túbulo renal proximal primario, mediante la regulación del eje factor 21 de transcripción de T-box / proteína quinasa activada por mitógenos/quinasa relacionada con la señal extracelular" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0020" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 3666 "Ancho" => 3508 "Tamanyo" => 929603 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">miR-322-5p promotes the apoptosis of AKI renal tubular epithelial cells by targeting Tbx21. (A) Six candidate downstream mRNAs of miR-322-5p were screened out by starBase (<span class="elsevierStyleInterRef" id="intr0005" href="http://starbase.sysu.edu.cn/">http://starbase.sysu.edu.cn/</span>). (B) The expression levels of six mRNAs were detected in renal tubular cells of LPS-induced AKI mice model (10<span class="elsevierStyleHsp" style=""></span>mg/kg; 24<span class="elsevierStyleHsp" style=""></span>h) and LPS-induced AKI mouse renal tubular epithelial cell model (5<span class="elsevierStyleHsp" style=""></span>μg/mL; 24<span class="elsevierStyleHsp" style=""></span>h) (Student's <span class="elsevierStyleItalic">t</span>-test). (C) qRT-PCR tested that Tbx21 mRNA level was reduced under miR-322-5p mimic treatment (Student's <span class="elsevierStyleItalic">t</span>-test). (D) Western blot revealed that the protein level of Tbx21 was lowered under miR-322-5p mimic treatment (Student's <span class="elsevierStyleItalic">t</span>-test). (E, F) Tbx21 mRNA and protein level under miR-322-5p inhibition were tested by qRT-PCR and western blot, respectively. Student's <span class="elsevierStyleItalic">t</span>-test. (G, H) The knockdown efficiency and overexpression efficiency of Tbx21 were verified by qRT-PCR analysis (one-way ANOVA, Tukey; Student's <span class="elsevierStyleItalic">t</span>-test). (I) The apoptosis rate was increased by Tbx21 knockdown (one-way ANOVA, Dunnett). (J) The apoptosis rate was decreased by Tbx21 overexpression (Student's <span class="elsevierStyleItalic">t</span>-test). (K, L) Caspase-3 activity was measured responding to Tbx21 knockdown (one-way ANOVA, Dunnett) and Tbx21 up-regulation (Student's <span class="elsevierStyleItalic">t</span>-test). (M, N) Caspase-9 activity was measured in cells with Tbx21 knockdown (one-way ANOVA, Dunnett) or overexpression (Student's <span class="elsevierStyleItalic">t</span>-test). (O) The luciferase activity was promoted by miR-322-5p overexpression in pmirGLO-Tbx21 3′UTR-WT group (two-way ANOVA, Tukey). (P) miR-322-5p was relatively enriched in Bio-Tbx21-WT group (one-way ANOVA, Tukey). (Q–S) Tbx21 deficiency could weaken the repressive effect of miR-322-5p inhibition on the apoptosis <span class="elsevierStyleItalic">via</span> measuring the apoptosis rate, Caspase-3 and Caspase-9 activities, respectively (one-way ANOVA, Tukey). The experiments as shown in C–S were performed in LPS-induced AKI mouse renal tubular epithelial cell model (5<span class="elsevierStyleHsp" style=""></span>μg/mL; 24<span class="elsevierStyleHsp" style=""></span>h). **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01, *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Acute kidney injury (AKI) is a common complication, which is defined by a repaid loss of kidney function based on an increase in the levels of BUN (blood urea nitrogen) and SCr (serum creatinine).<a class="elsevierStyleCrossRef" href="#bib0255"><span class="elsevierStyleSup">1</span></a> This life-threatening complication results in two million deaths per year and may be caused by various clinical conditions.<a class="elsevierStyleCrossRef" href="#bib0260"><span class="elsevierStyleSup">2</span></a> The categories of AKIs conventionally include prerenal, intrarenal and postrenal causes.<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">3</span></a> There are no specific therapies which can attenuate AKI and promote recovery.<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">4</span></a> Renal replacement therapy and correcting reversible causes are main options of AKI treatment at present.<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">3</span></a> New diagnostic techniques (e.g., renal biomarkers) have the potential of assisting early diagnosis,<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">3</span></a> thus it is imperative to explore the potential biomarkers and investigate the underlying mechanism of AKI progression.</p><p id="par0010" class="elsevierStylePara elsevierViewall">MiRNAs (microRNAs) are a class of small non-coding RNAs (ncRNAs) that can act as regulators of their target genes to involve in biological processes.<a class="elsevierStyleCrossRef" href="#bib0275"><span class="elsevierStyleSup">5</span></a> MiRNA dysregulation contributes to the development and progression of multiple diseases, including AKI.<a class="elsevierStyleCrossRef" href="#bib0280"><span class="elsevierStyleSup">6</span></a> Increasing evidence has proven the potential of miRNAs to act as new diagnostic biomarkers of AKI,<a class="elsevierStyleCrossRef" href="#bib0285"><span class="elsevierStyleSup">7</span></a> such as miR-16,<a class="elsevierStyleCrossRef" href="#bib0290"><span class="elsevierStyleSup">8</span></a> miR-494<a class="elsevierStyleCrossRef" href="#bib0295"><span class="elsevierStyleSup">9</span></a> and miR-101.<a class="elsevierStyleCrossRef" href="#bib0300"><span class="elsevierStyleSup">10</span></a> Herein, we investigated the role of potential AKI-related miRNA in AKI. MiRNAs exerts their functions in human diseases usually through direct regulation of their downstream mRNAs (messenger RNAs).<a class="elsevierStyleCrossRefs" href="#bib0305"><span class="elsevierStyleSup">11–13</span></a> In our current study, as miRNA–mRNA axis in AKI remains largely unknown, we also explored its downstream mRNA and its relevant regulatory mechanism in AKI.</p><p id="par0015" class="elsevierStylePara elsevierViewall">The purpose of this research is to uncover potential AKI-related miRNA and the downstream mechanism. To obtain this aim, we established LPS (lipopolysaccharide)-induced AKI mice model and LPS-induced AKI mouse renal tubular epithelial cell model for the follow-up AKI-focused investigations. Then, we utilized the bioinformatics tool GEO (Gene Expression Omnibus) to screen out miR-322-5p and applied starBase to acquire its downstream target Tbx21, and then explored the impact of miR-322-5p/Tbx21 axis on cell apoptosis in LPS-induced AKI models. Given that MAPK/ERK (mitogen-activated protein kinase/extracellular signal-related kinase) pathway has been shown to be linked to cell apoptosis in multiple cancers,<a class="elsevierStyleCrossRefs" href="#bib0320"><span class="elsevierStyleSup">14,15</span></a> we hypothesized this pathway was potentially involved in miR-322-5p/Tbx21 axis-regulated LPS-induced AKI.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Materials and methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Cell culture</span><p id="par0020" class="elsevierStylePara elsevierViewall">Mouse primary proximal renal tubular epithelial cells were procured from Cell Biologics, Inc. Following the manufacturer's manual, DMEM/F-12 (Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12, Gibco-BRL, Carlsbad, CA, USA) was applied for cell culture, with the addition of 10% FBS (fetal bovine serum; Gibco-BRL). HEK-293T cells supplied by National Institute for the Control of Pharmaceutical and Biological Products (NICPBP) were cultured in DMEM (Gibco-BRL), supplemented with the medium supplements including 10% FBS and 1% Penicillin-Streptomycin Solution (Cat#: 15140122, Gibco-BRL).</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">LPS-induced AKI mouse models <span class="elsevierStyleItalic">in vivo</span> and <span class="elsevierStyleItalic">in vitro</span></span><p id="par0025" class="elsevierStylePara elsevierViewall">A total of nine 5-week-old mice (female) supplied by Model Animal Institute of Nanjing University were treated with a standard laboratory diet. Animal experiments were approved by the Ethics Committee of the Nanjing First Hospital. LPS was dissolved into normal saline and used for intraperitoneal injection at 10<span class="elsevierStyleHsp" style=""></span>mg/kg for different time.<a class="elsevierStyleCrossRef" href="#bib0330"><span class="elsevierStyleSup">16</span></a> The kidney tissue and serum samples were collected at 0, 12 and 24<span class="elsevierStyleHsp" style=""></span>h. Here, LPS-induced AKI mice model was established after treatment with LPS for 24<span class="elsevierStyleHsp" style=""></span>h. To establish <span class="elsevierStyleItalic">in vitro</span> AKI cell model, we treated mouse primary renal tubular epithelial cells with LPS (0, 2.5, 5<span class="elsevierStyleHsp" style=""></span>μg/mL) for different time.<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">17</span></a> Here, the mostly used <span class="elsevierStyleItalic">in vitro</span> AKI cell model was constructed with LPS treatment (5<span class="elsevierStyleHsp" style=""></span>μg/mL) for 24<span class="elsevierStyleHsp" style=""></span>h.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Renal function test</span><p id="par0030" class="elsevierStylePara elsevierViewall">Renal function was evaluated by measuring the levels of BUN and SCr in LPS-induced AKI mice in line with the described protocol.<a class="elsevierStyleCrossRef" href="#bib0340"><span class="elsevierStyleSup">18</span></a> The former was detected using QuantiChrom™ Urea Assay Kit (BioAssay Systems) and the latter using QuantiChrom™ Creatinine Assay Kit (BioAssay Systems), following the protocols of the supplier.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Assessment of renal oxidative stress levels</span><p id="par0035" class="elsevierStylePara elsevierViewall">To assess oxidative stress in renal tissues of AKI mice after indicated LPS treatment, the levels of oxidative stress marker MDA (malondialdehyde) and antioxidant enzymes including CAT (catalase), SOD (superoxide dismutase) and GSH-Px (glutathione peroxidase) were detected <span class="elsevierStyleItalic">via</span> utilizing commercially available assay kits as per the supplier's directions. MDA level was detected utilizing assay kit supplied by Beijing Xinshengyuan Biomedical Technology Co., LTD. (Beijing, China); SOD and GSH-Px levels were detected by Invitrogen assay kit; CAT level was detected by Thermo Scientific assay kit (Rockford, IL, USA). The experiments were guided by the described protocol.<a class="elsevierStyleCrossRef" href="#bib0340"><span class="elsevierStyleSup">18</span></a></p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Quantitative real-time PCR (qRT-PCR)</span><p id="par0040" class="elsevierStylePara elsevierViewall">Total RNA was extracted from mouse primary proximal renal tubular epithelial cells and kidney tissue samples by using Trizol reagent (Takara, Japan). Reverse transcription and cDNA (complementary DNA) synthesis were implemented by using Hifair® III 1st Strand cDNA Synthesis SuperMix for qPCR (Cat#: 11141ES10, Takara, Japan) or miScript II RT Kit (Cat#: 218160, Qiagen, Hilden, Germany). qPCR was performed using qRT-PCR Kit (Cat#: QR0100-1KT, Sigma–Aldrich, St. Louis, MO, USA). Lastly, we calculated relative RNA levels as per the 2<span class="elsevierStyleSup">−ΔΔCt</span> method.<a class="elsevierStyleCrossRef" href="#bib0345"><span class="elsevierStyleSup">19</span></a></p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Vector construction and cell transfection</span><p id="par0045" class="elsevierStylePara elsevierViewall">Short hairpin RNAs (shRNAs) directly against Tbx21 (sh-Tbx21-1, sh-Tbx21-2, sh-Tbx21-3) and negative control of shRNA (sh-NC), pcDNA3.1 empty vector, and pcDNA3.1-Tbx21 were supplied by GenePharma (Shanghai, China). Cells were placed on the 6-well plates at a density of 7<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">5</span> cells per well and incubated for 6<span class="elsevierStyleHsp" style=""></span>h followed by transfection with indicated plasmids using Lipofectamine 2000 (Cat#: 11668019, Invitrogen). MiR-322-5p mimics, miR-322-5p inhibitors, as well as their negative controls (mimic-NC and inhibitor-NC) were constructed by RiboBio (Guangzhou, China), and the sequences are listed in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>. Then, 250<span class="elsevierStyleHsp" style=""></span>pmol of miR mimics/inhibitors were transfected into cells incubated in a 6-well plate <span class="elsevierStyleItalic">via</span> Lipofectamine 2000 for 48<span class="elsevierStyleHsp" style=""></span>h.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Western blot</span><p id="par0050" class="elsevierStylePara elsevierViewall">Western blot was carried out as previously described.<a class="elsevierStyleCrossRef" href="#bib0350"><span class="elsevierStyleSup">20</span></a> Total proteins were isolated using Total Protein Extraction Kit (Cat#: PROTTOT-1KT, Sigma–Aldrich) in line with the manufacturer's recommendations. In this assay, protein concentration was measured by Bradford Protein Assay Kit (Cat#: P0006C, Beyotime Biotechnology, Shanghai, China). The protein extracts were loaded onto SDS-PAGE (Cat#: P0670-250<span class="elsevierStyleHsp" style=""></span>mL, Beyotime Biotech, Shanghai, China), followed by protein transfer onto PVDF membranes (Sigma–Aldrich). The membranes were sealed with non-fat milk in TBST for 1<span class="elsevierStyleHsp" style=""></span>h at room temperature and subsequently incubated with primary antibodies at 4<span class="elsevierStyleHsp" style=""></span>°C overnight. After TBST washing, the membranes were subjected to 1<span class="elsevierStyleHsp" style=""></span>h of incubation with secondary antibodies, followed by TBST washing. Then, the membranes were incubated with ECL reagent (Absin, Shanghai, China) at room temperature and photographed. The antibodies used in this assay included Anti-β-actin (Cat#: ab8227, Abcam, Cambridge, Mass, USA), Anti-ERK1<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>ERK2 (phospho T202<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>Y204; Cat#: ab223500, Abcam), and Anti-T-bet/Tbx21 (Cat#: ab91109, Abcam). β-Actin was used as an internal loading control. For each antibody, the experiment using each set of samples was performed in triplicate.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Measurement of Caspase-3 and Caspase-9 activity</span><p id="par0055" class="elsevierStylePara elsevierViewall">The experiments were conducted as described.<a class="elsevierStyleCrossRef" href="#bib0355"><span class="elsevierStyleSup">21</span></a> According to the supplier's recommendations, the activity of Caspase-3 or Caspase-9 in cell lysates was detected using Caspase-3 Colorimetric Assay Kit (KeyGEN Biotech, Nanjing, China) or Caspase-9 Colorimetric Assay Kit (KeyGEN Biotech), respectively.</p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Dual luciferase reporter assay</span><p id="par0060" class="elsevierStylePara elsevierViewall">Dual luciferase reporter assay was performed as previously described.<a class="elsevierStyleCrossRef" href="#bib0360"><span class="elsevierStyleSup">22</span></a> The pmirGLO vectors were purchased from Promega (Madison, WI, USA). Utilizing Lipofectamine 2000, luciferase reporter vectors (pmirGLO, pmirGLO-Tbx21 3′UTR-WT or pmirGLO-Tbx21 3′UTR-Mut) were co-transfected with 5<span class="elsevierStyleHsp" style=""></span>pmol of NC mimic or miR-322-5p mimic (20<span class="elsevierStyleHsp" style=""></span>μM) into cells. 48<span class="elsevierStyleHsp" style=""></span>h later, relative luciferase activities were detected with Dual-Luciferase® Reporter Assay System (Promega). The sequences for Tbx21 3′UTR are listed in <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>.</p><elsevierMultimedia ident="tbl0010"></elsevierMultimedia></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">RNA pulldown assay</span><p id="par0065" class="elsevierStylePara elsevierViewall">RNA pulldown assay was implemented as previously described.<a class="elsevierStyleCrossRef" href="#bib0365"><span class="elsevierStyleSup">23</span></a> The biotin-labeled probes (including Bio-NC, Bio-Tbx21-WT, and Bio-Tbx21-Mut) was obtained from RiboBio. Later, Cell lysates were mixed with indicated probes overnight, and then subjected to incubation with streptavidin-coated magnetic beads (Sigma–Aldrich) for 2<span class="elsevierStyleHsp" style=""></span>h at 4<span class="elsevierStyleHsp" style=""></span>°C. The biotinylated RNA complexes were pulled down and the enrichment of RNA was measured <span class="elsevierStyleItalic">via</span> qRT-PCR.</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">Terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL)</span><p id="par0070" class="elsevierStylePara elsevierViewall">TUNEL assay was conducted for the evaluation of cell apoptosis as previously described.<a class="elsevierStyleCrossRef" href="#bib0370"><span class="elsevierStyleSup">24</span></a> The transfected cells underwent 15<span class="elsevierStyleHsp" style=""></span>min of fixation in 4% paraformaldehyde at room temperature. <span class="elsevierStyleItalic">In situ</span> Cell Death Detection Kit (Roche, Mannheim, Germany) was used to perform TUNEL staining as per the supplier's manual. Lastly, TUNEL-positive cells were counted under a fluorescence microscope (Cat#: XSP-63B, Shanghai Optical Instrument Factory No.1).</p></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0130">Flow cytometry apoptotic analysis</span><p id="par0075" class="elsevierStylePara elsevierViewall">Flow cytometry analysis was implemented to test cell apoptosis as previously described.<a class="elsevierStyleCrossRef" href="#bib0375"><span class="elsevierStyleSup">25</span></a> After incubation, the cells were collected and dyed by Annexin V-FITC/PI from BD Biosciences (San Diego, CA, USA), followed by analysis with BD Flow Cytometer (BD Biosciences, Franklin Lakes, NJ, USA) analysis.</p></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0135">PAS (Periodic Acid-Schiff) staining</span><p id="par0080" class="elsevierStylePara elsevierViewall">PAS staining was implemented as previously described.<a class="elsevierStyleCrossRef" href="#bib0380"><span class="elsevierStyleSup">26</span></a> The section of LPS-treated mice's kidney tissue samples was stained using PAS (Cat#: Ab150680, Abcam). Pathological section was reviewed under a confocal microscope (Smartzoom 5, Zeiss, Shanghai, China).</p></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0140">Histological analysis</span><p id="par0085" class="elsevierStylePara elsevierViewall">The renal tubular injury was characterized with deformation of vacuoles, loss of brush border, kidney tubular dilation or nuclear condensation. The severity of tubular injury was scored as per the following scoring system: 0 to 4 based on the percentage of the injured area of the section (0<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>no change; 1<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>changes affecting<span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>25%; 2<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>changes affecting 25–50%; 3<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>changes affecting 50–75%; 4<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>changes affecting<span class="elsevierStyleHsp" style=""></span>><span class="elsevierStyleHsp" style=""></span>75% of the section). At least six different visual fields were randomly chosen under a confocal microscope (magnification, ×400; Smartzoom 5, Zeiss) and the average score was calculated.</p></span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0145">Observation of mitochondrial morphology</span><p id="par0090" class="elsevierStylePara elsevierViewall">Mitochondrial morphology was detected with the help of Mitotracker Red CMXRos (Invitrogen) as per the previous protocol.<a class="elsevierStyleCrossRef" href="#bib0385"><span class="elsevierStyleSup">27</span></a> Mitochondrial branch length was observed by the inverted microscope (Nikon Ti-E, Nikon Corporation) and the mean branch length was measured by ImageJ.</p></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0150">U0126 treatment</span><p id="par0095" class="elsevierStylePara elsevierViewall">U0126 served as the inhibitor of MAPK/ERK signaling pathway.<a class="elsevierStyleCrossRef" href="#bib0390"><span class="elsevierStyleSup">28</span></a> U0126 (Cat#: HY-12031, Med Chem Express, Monmouth Junction, NJ, USA) treatment was performed as per the manual of the supplier.</p></span><span id="sec0095" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0155">Statistical analysis</span><p id="par0100" class="elsevierStylePara elsevierViewall">Bio-repeats in each experiment were implemented in triplicate and technical replicates were repeated three times for each bio-repeat. Data analysis was processed with the application of SPSS 22.0 (SPSS Inc., Chicago, IL, USA). The experimental data were presented as mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>SD (standard deviation). In this study, group difference was analyzed by Student's <span class="elsevierStyleItalic">t</span>-test, one-way ANOVA (analysis of variance) or two-way ANOVA, followed by Dunnett or Tukey correction. <span class="elsevierStyleItalic">P</span> value less than 0.05 indicated data were statistically significant.</p></span></span><span id="sec0100" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0160">Results</span><p id="par0105" class="elsevierStylePara elsevierViewall">In this research, we established LPS-induced AKI <span class="elsevierStyleItalic">in vitro</span> model and <span class="elsevierStyleItalic">in vivo</span> model for the following investigations to explore the underlying mechanism of AKI. Bioinformatics tools and experiments were utilized to determine the object of research (miRNA of interest: miR-322-5p) and its downstream target (Tbx21). We then performed TUNEL staining and detected the activity of apoptotic markers (Caspase-3 and Caspase-9) to evaluate the impact of miR-322-5p on cell apoptosis in LPS-induced AKI model. Given that stimulation of MAPK/ERK signaling pathway is linked to cell apoptosis, we further probed into whether it was involved in the process of miR-322-5p/Tbx21 axis affecting the apoptosis of <span class="elsevierStyleItalic">in vitro</span> AKI model.</p><span id="sec0105" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0165">Establishment of LPS-induced AKI mice model and mouse renal tubular epithelial cell model</span><p id="par0110" class="elsevierStylePara elsevierViewall">Given that the levels of BUN and SCr represent the severity of AKI, we firstly measured the levels of BUN and SCr in LPS-treated mice. The results showed that both serum BUN and SCr levels in LPS-treated mice markedly were elevated as the time of LPS treatment went by (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 1</a>A, B; *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05, **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Then, we observed swollen renal tubular epithelial cells, deformed vacuoles, and abnormally narrowed renal tubules in the pathological section of LPS-treated mice's kidney tissues and found that the symptoms were getting worse as time went by (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 1</a>C), which suggested the increasing severity of AKI. LPS treatment exacerbated renal tubular injury in LPS-treated mice (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 1</a>D; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Consistent with this, we also observed that the level of oxidative stress in AKI mice renal was increased with LPS treatment time, since LPS increased the level of MDA and reduced the activities of SOD, CAT and GSH-Px in a time-dependent manner (<a class="elsevierStyleCrossRef" href="#sec0165">Fig. S1A–D</a>; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). In addition, we assessed the activity of apoptotic markers, including Caspase-3 and Caspase-9. The results demonstrated that both Caspase-3 activity and Caspase-9 activity in renal tubular cells of LPS-treated mice were significantly enhanced as the time of LPS treatment (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 1</a>E, F; *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05, **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Meanwhile, we also detected that the levels of caspase-3, caspase-9 and Bax were elevated whereas the level of Bcl-2 was reduced in renal tissues from AKI mice along with the increasing LPS treatment dose (<a class="elsevierStyleCrossRef" href="#sec0165">Fig. S1E</a>). Moreover, we observed that TUNEL-positive cells in LPS-treated mice's kidney tissues were greatly increased as well (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 1</a>G, H; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Together, we confirmed that LPS-induced AKI mice model was established successfully. Given that the highest efficiency of 24-h LPS treatment, we chose it for <span class="elsevierStyleItalic">in vivo</span> experiments in this research.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0115" class="elsevierStylePara elsevierViewall">Next, we measured the apoptosis rate of LPS-treated mouse renal tubular epithelial cells. The apoptosis rate showed an obvious increase in a time-dependent manner (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 1</a>I; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Meanwhile, Caspase-3 and Caspase-9 activities were enhanced by LPS treatment (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 1</a>J, K; *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05, **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Thereby, we confirmed the successful establishment of <span class="elsevierStyleItalic">in vitro</span> AKI cell model. Since 24<span class="elsevierStyleHsp" style=""></span>h of LPS treatment presented the higher efficiency than 12-h LPS treatment, we chose it for <span class="elsevierStyleItalic">in vitro</span> experiments in this research.</p></span><span id="sec0110" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0170">miR-322-5p promotes the apoptosis of AKI renal tubular epithelial cells</span><p id="par0120" class="elsevierStylePara elsevierViewall">We next explored a functional miRNA in AKI. With the application of GSE130796 (screening condition: log2 | FC |<span class="elsevierStyleHsp" style=""></span>><span class="elsevierStyleHsp" style=""></span>1.0, <span class="elsevierStyleItalic">P</span>adj<span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05), we obtained five putative miRNAs (miR-122-5p, miR-126a-5p, miR-322-5p, miR-200a-5p, and miR-374-5p). Then qRT-PCR detected that both miR-126a-5p and miR-322-5p were elevated by LPS treatment at 24<span class="elsevierStyleHsp" style=""></span>h in AKI renal tubular epithelial cells (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 2</a>A, **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Further, we explored whether the expression of miR-126a-5p and miR-322-5p was affected by LPS in a dose- or time-dependent manner. As illustrated in <a class="elsevierStyleCrossRef" href="#fig0015">Fig. 2</a>B (*<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05, **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01), the expression level of miR-322-5p, instead of miR-126a-5p, was heightened with the treating time of LPS in AKI mice renal tissues. Likewise, the results in AKI cell model were consistent with those in <span class="elsevierStyleItalic">in vivo</span> model (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 2</a>C, D; *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05, **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Therefore, we speculated that miR-322-5p might be able to regulate the apoptosis of AKI renal tubular epithelial cells.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0125" class="elsevierStylePara elsevierViewall">We then evaluated the regulatory role of miR-322-5p on the apoptosis of AKI renal tubular epithelial cells. The effect of miR-322-5p overexpression or deficiency on the apoptosis rate of AKI renal tubular epithelial cells was identified by flow cytometry apoptotic analysis. The results displayed that up-regulation of miR-322-5p increased the apoptosis rate while knockdown of miR-322-5p exhibited the opposite effect (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 2</a>E, F; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01), indicating that miR-322-5p promotes the apoptosis of AKI renal tubular epithelial cells. Additionally, we measured the impact of miR-322-5p on the activity of apoptotic markers. The results showed that elevation of miR-322-5p enhanced caspase-3 activity while inhibition of miR-322-5p decreased caspase-3 activity (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 2</a>G, H; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Also, the caspase-9 activity was promoted by elevation of miR-322-5p but suppressed by ablation of miR-322-5p (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 2</a>I, J; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Taken together, miR-322-5p accelerates the apoptosis of AKI renal tubular epithelial cells.</p></span><span id="sec0115" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0175">miR-322-5p promotes the apoptosis of AKI renal tubular epithelial cells <span class="elsevierStyleItalic">via</span> inhibiting Tbx21</span><p id="par0130" class="elsevierStylePara elsevierViewall">Moreover, we probed into the molecular mechanism of miR-322-5p in AKI renal tubular epithelial cells. Previous literatures have reported that miRNAs play a role in regulating target gene expression.<a class="elsevierStyleCrossRef" href="#bib0395"><span class="elsevierStyleSup">29</span></a> Through the preliminary prediction on the starBase website (<a href="http://starbase.sysu.edu.cn/">http://starbase.sysu.edu.cn/</a>), we selected six putative mRNAs associated with cell proliferation, morphology, and apoptosis in cancers, including Grb2,<a class="elsevierStyleCrossRef" href="#bib0400"><span class="elsevierStyleSup">30</span></a> Rictor,<a class="elsevierStyleCrossRef" href="#bib0405"><span class="elsevierStyleSup">31</span></a> Tbx21,<a class="elsevierStyleCrossRef" href="#bib0410"><span class="elsevierStyleSup">32</span></a> Ddx3x,<a class="elsevierStyleCrossRef" href="#bib0415"><span class="elsevierStyleSup">33</span></a> Ube4b,<a class="elsevierStyleCrossRef" href="#bib0420"><span class="elsevierStyleSup">34</span></a> and Vegfa<a class="elsevierStyleCrossRef" href="#bib0425"><span class="elsevierStyleSup">35</span></a> (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 3</a>A). Subsequently, we measured the expression levels of above candidate mRNAs in renal tubular cells of LPS-induced AKI mice model (10<span class="elsevierStyleHsp" style=""></span>mg/kg) and in LPS-induced AKI renal tubular epithelial cell model (5<span class="elsevierStyleHsp" style=""></span>μg/mL). The results showed that Tbx21 was significantly down-regulated in both LPS-induced AKI <span class="elsevierStyleItalic">in vivo</span> and <span class="elsevierStyleItalic">in vitro</span> models (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 3</a>B; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Tbx21 were thereby selected for the subsequent investigations. To explore the effect of miR-322-5p on Tbx21 expression, we measured the mRNA level and protein level of Tbx21 under miR-322-5p mimic/inhibitor treatment. Tbx21 levels were visibly decreased by up-regulation of miR-322-5p (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 3</a>C, D; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01), whereas those of Tbx21 were obviously increased by miR-322-5p silencing (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 3</a>E, F; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01), indicating that miR-322-5p negatively modulates Tbx21 expression.</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia><p id="par0135" class="elsevierStylePara elsevierViewall">Besides, we investigated the effect of Tbx21 on the apoptosis of AKI renal tubular epithelial cells. The interference efficiency and overexpression efficiency of Tbx21 were elucidated by qRT-PCR analysis. In view of the higher knockdown efficiency of sh-Tbx21-1 and sh-Tbx21-2 plasmids (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 3</a>G; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01), we chose sh-Tbx21-1 and sh-Tbx21-2 for the following experiments; overexpression of Tbx21 was confirmed as qRT-PCR detected a significant increase in Tbx21 level in transfected cells with pcDNA3.1-Tbx21 (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 3</a>H; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Through apoptosis assays, we found that depletion of Tbx21 significantly enhanced the apoptosis rate of LPS-induced AKI renal tubular epithelial cell model while overexpression of Tbx21 led to the reverse results (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 3</a>I, J; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Likewise, Caspase-3 and Caspase-9 activities were strengthened by Tbx21 silencing but impaired by Tbx21 overexpression (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 3</a>K–N; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Altogether, Tbx21 negatively modulates cell apoptosis in AKI renal tubular epithelial cells.</p><p id="par0140" class="elsevierStylePara elsevierViewall">To further explore the physical interaction of miR-322-5p and Tbx21, we performed luciferase reporter and RNA pulldown assays in LPS-induced AKI mouse renal tubular epithelial cell model. As shown in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 3</a>O (**<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01), the luciferase activity of pmirGLO-Tbx21 3′UTR-WT was dramatically inhibited by miR-322-5p mimic while that of pmirGLO-Tbx21 3′UTR-Mut had no obvious change, suggesting that miR-322-5p could bind to Tbx21. The results of RNA pulldown assays also verified the same finding since miR-322-5p was overtly abundant in Bio-Tbx21-WT group instead of mutated group (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 3</a>P; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Rescue experiments were subsequently carried out to determine the impact of miR-322-5p/Tbx21 axis on cell apoptosis in AKI cell model. We found that Tbx21 knockdown attenuated the suppressive effect of downregulated miR-322-5p on the apoptosis rate of AKI renal tubular epithelial cells (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 3</a>Q; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). In the meantime, silenced Tbx21 impaired the repression of miR-322-5p knockdown on the Caspase-3 activity and Caspase-9 activity as depicted in <a class="elsevierStyleCrossRef" href="#fig0020">Fig. 3</a>R and S (*<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05, **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). In conclusion, miR-322-5p enhances the apoptosis of AKI renal tubular epithelial cells <span class="elsevierStyleItalic">via</span> negatively modulating Tbx21.</p></span><span id="sec0120" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0180">Tbx21 modulates mitochondrial fission and cell apoptosis through MAPK/ERK signaling pathway</span><p id="par0145" class="elsevierStylePara elsevierViewall">As MAPK/ERK pathway has been reported to be associated with cell apoptosis,<a class="elsevierStyleCrossRefs" href="#bib0320"><span class="elsevierStyleSup">14,15</span></a> we next investigated whether Tbx21 affects the MAPK/ERK signaling pathway. Western blots showed that the protein level of p-ERK1/2 and p-MAPK was increased after 24<span class="elsevierStyleHsp" style=""></span>h of LPS treatment (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 4</a>A; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01), implying the activation of MAPK/ERK signaling pathway in renal tubular cell of LPS-induced AKI mice model. As shown in <a class="elsevierStyleCrossRef" href="#fig0025">Fig. 4</a>B, p-ERK1/2 also showed a higher protein level after 24<span class="elsevierStyleHsp" style=""></span>h of LPS treatment (*<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05, **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01), displaying the stimulation of MAPK/ERK signaling pathway in LPS-induced AKI renal tubular epithelial cell model. Later, we explored the impact of Tbx21 on the MAPK/ERK signaling pathway. The results of western blot suggested that Tbx21 deficiency obviously increased p-ERK1/2 protein level (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 4</a>C; *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05, **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Simultaneously, overexpression of Tbx21 largely reduced the protein level of p-ERK1/2 (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 4</a>D; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). In a word, Tbx21 could impede the stimulation of MAPK/ERK pathway in LPS-induced AKI mice model and cell model.</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><p id="par0150" class="elsevierStylePara elsevierViewall">Since the association between mitochondrial fission and cell apoptosis has been reported in previous studies,<a class="elsevierStyleCrossRefs" href="#bib0430"><span class="elsevierStyleSup">36,37</span></a> we then investigated the effect of Tbx21 on mitochondrial morphology. Before that, we analyzed the mitochondrial morphology in LPS-induced AKI cell model. The mitochondria got rounded, small and fragmented upon LPS treatment (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 4</a>E), suggesting that the mitochondria were injured in LPS-induced AKI cell model. The mean branch length of mitochondria was significantly decreased caused by LPS treatment (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 4</a>F; *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05, **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01), exhibiting the improved degree of mitochondrial fission. Next, we observed the mitochondrial morphology and found that upon ablation of Tbx21, the mitochondria got rounded, small and fragmented and the mean branch length was decreased (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 4</a>G, H; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). On the contrary, the mitochondria became tubular and the mean branch length was increased upon up-regulation of Tbx21 (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 4</a>I, J; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). The above results verified that Tbx21 suppresses mitochondrial fission in LPS-induced AKI renal tubular epithelial cell model. Afterwards, we used the inhibitor of MAPK/ERK pathway U0126<a class="elsevierStyleCrossRef" href="#bib0390"><span class="elsevierStyleSup">28</span></a> to further verify whether Tbx21 affects mitochondrial fission through the MAPK/ERK pathway. The mitochondria became tabulated under U0126 treatment compared to sh-Tbx21-1 group (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 4</a>K). The measurement results of the mean branch length also verified the same finding as the mean branch length was relatively increased in sh-Tbx21-1<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>U0126 group compared to that in sh-Tbx21-1 group (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 4</a>L; *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05, **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). To sum up, Tbx21 negatively regulates mitochondrial fission <span class="elsevierStyleItalic">via</span> MAPK/ERK signaling pathway.</p><p id="par0155" class="elsevierStylePara elsevierViewall">Moreover, we detected the apoptosis rate of AKI mouse renal tubular epithelial cell model with indicated transfections. The data exhibited that the apoptosis rate was lower in sh-Tbx21-1<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>U0126 group compared to that in sh-Tbx21-1 group (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 4</a>M; **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Additionally, Caspase-3 and Caspase-9 activities were lowered in sh-Tbx21-1<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>U0126 group compared to that in sh-Tbx21-1 group (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 4</a>N, O; *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05, **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01). Thus, we concluded that Tbx21 negatively modulates mitochondrial fission and cell apoptosis <span class="elsevierStyleItalic">via</span> MAPK/ERK signaling pathway.</p></span></span><span id="sec0125" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0185">Discussion</span><p id="par0160" class="elsevierStylePara elsevierViewall">AKI is a common and serious problem threatening millions per year, resulting in deaths and disability.<a class="elsevierStyleCrossRef" href="#bib0440"><span class="elsevierStyleSup">38</span></a> Previous studies have confirmed the correlation between miRNAs and AKI.<a class="elsevierStyleCrossRef" href="#bib0445"><span class="elsevierStyleSup">39</span></a> For instance, miR-668 down-regulates MTP18 to preserve mitochondrial dynamics in IAKI (ischemic acute kidney injury).<a class="elsevierStyleCrossRef" href="#bib0450"><span class="elsevierStyleSup">40</span></a> miR-214 ameliorates AKI by impairing apoptosis <span class="elsevierStyleItalic">via</span> targeting DKK3 and stimulating the Wnt/β-catenin pathway.<a class="elsevierStyleCrossRef" href="#bib0455"><span class="elsevierStyleSup">41</span></a> In our study, we found a novel functional miRNA in AKI. Herein, we identified that miR-322-5p expression was increased in LPS-induced AKI model in time- and dose-dependent manner. More importantly, we found that miR-322-5p promotes the apoptosis of AKI renal tubule epithelial cells.</p><p id="par0165" class="elsevierStylePara elsevierViewall">Besides, we uncovered the regulation mechanism of miR-322-5p in AKI. Given that miRNAs could modulate target gene expression,<a class="elsevierStyleCrossRef" href="#bib0460"><span class="elsevierStyleSup">42</span></a> we investigated potential miR-322-5p target in this research. Previous studies have identified several targets of miR-322-5p, such as Smad7,<a class="elsevierStyleCrossRef" href="#bib0465"><span class="elsevierStyleSup">43</span></a> IGF-1,<a class="elsevierStyleCrossRef" href="#bib0470"><span class="elsevierStyleSup">44</span></a> TSPAN5,<a class="elsevierStyleCrossRef" href="#bib0475"><span class="elsevierStyleSup">45</span></a><span class="elsevierStyleItalic">etc.</span> Here, we presented a novel downstream target gene of miR-322-5p, Tbx21. Tbx21 has been proven to be a suppressor of MAPK/ERK signaling pathway in thyroid cancer.<a class="elsevierStyleCrossRef" href="#bib0480"><span class="elsevierStyleSup">46</span></a> Stimulation of MAPK/ERK signaling pathway is linked to cell apoptosis. For example, miR-497 promotes apoptosis through negative regulation of RAF-1-mediated MAPK/ERK signaling pathway.<a class="elsevierStyleCrossRef" href="#bib0485"><span class="elsevierStyleSup">47</span></a> Based on this, we speculated that miR-322-5p promotes the apoptosis <span class="elsevierStyleItalic">via</span> repressing Tbx21, which might inactivate the MAPK/ERK signaling pathway in AKI. Through the loss-of-function and gain-of-function experiments, we identified the inhibitory effect of Tbx21 on cell apoptosis in AKI models. We also manifested the mechanism by which Tbx21 regulated cell apoptosis in AKI through MAPK/ERK pathway. In this study, we demonstrated that Tbx21 inactivates MAPK/ERK signaling pathway in AKI.</p><p id="par0170" class="elsevierStylePara elsevierViewall">Mitochondria are highly dynamic organelles undergoing regular fission and fusion cycles.<a class="elsevierStyleCrossRef" href="#bib0490"><span class="elsevierStyleSup">48</span></a> Mitochondrial fission is related to apoptosis and often occurs in AKI.<a class="elsevierStyleCrossRef" href="#bib0430"><span class="elsevierStyleSup">36</span></a> Alterations in mitochondrial morphology are related to changes in metabolism, cell death and cell development.<a class="elsevierStyleCrossRef" href="#bib0495"><span class="elsevierStyleSup">49</span></a> In addition, previous studies have highlighted the therapeutic potential of blocking excessive mitochondrial fission in the treatment of human diseases.<a class="elsevierStyleCrossRef" href="#bib0500"><span class="elsevierStyleSup">50</span></a> In this research, we found that Tbx21 suppressed the mitochondrial fission and cell apoptosis. Intriguingly, the inhibition of MAPK/ERK signaling pathway weakened the inhibitory effect of Tbx21 on mitochondrial fission and cell apoptosis. Thus, we identified that Tbx21 modulates mitochondrial fission and cell apoptosis through MAPK/ERK signaling pathway.</p></span><span id="sec0130" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0190">Conclusion</span><p id="par0175" class="elsevierStylePara elsevierViewall">In conclusion, the present study demonstrated that miR-322-5p enhanced the apoptosis of AKI renal tubular epithelial cells <span class="elsevierStyleItalic">via</span> inhibiting Tbx21 expression. Additionally, we revealed that miR-322-5p activated MAPK/ERK signaling pathway to modulate the apoptosis of AKI mouse renal tubular epithelial cells. Further investigations will focus on other signals modified by miR-322-5p except Tbx21/MAPK/ERK axis in the future research.</p></span><span id="sec0135" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0195">Authors’ contributions</span><p id="par0180" class="elsevierStylePara elsevierViewall">Li Fan: conception and design, administrative support.</p><p id="par0185" class="elsevierStylePara elsevierViewall">Xiaodong Liu: collection and assembly of data, data analysis and interpretation.</p><p id="par0190" class="elsevierStylePara elsevierViewall">Xiaobing Ji and Xiangxiang Li: collection and assembly of data, data analysis and interpretation.</p><p id="par0195" class="elsevierStylePara elsevierViewall">Xin Du: collection and assembly of data, data analysis and interpretation.</p><p id="par0200" class="elsevierStylePara elsevierViewall">Manuscript writing: all authors.</p><p id="par0205" class="elsevierStylePara elsevierViewall">Final approval of manuscript: all authors.</p></span><span id="sec0140" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0200">Statement of ethics</span><p id="par0210" class="elsevierStylePara elsevierViewall">Animal study was approved by the Ethics Committee of the Nanjing First Hospital.</p></span><span id="sec0145" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0205">Data availability statement</span><p id="par0215" class="elsevierStylePara elsevierViewall">Not applicable.</p></span><span id="sec0150" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0210">Funding sources</span><p id="par0220" class="elsevierStylePara elsevierViewall">This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.</p></span><span id="sec0155" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0215">Conflict of interest</span><p id="par0225" class="elsevierStylePara elsevierViewall">The authors have no conflicts of interest to declare.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:16 [ 0 => array:3 [ "identificador" => "xres2050514" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction and objectives" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Materials and methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1751180" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres2050515" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Introducción y objetivos" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Materiales y métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1751181" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methods" "secciones" => array:17 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Cell culture" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "LPS-induced AKI mouse models in vivo and in vitro" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Renal function test" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Assessment of renal oxidative stress levels" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "Quantitative real-time PCR (qRT-PCR)" ] 5 => array:2 [ "identificador" => "sec0040" "titulo" => "Vector construction and cell transfection" ] 6 => array:2 [ "identificador" => "sec0045" "titulo" => "Western blot" ] 7 => array:2 [ "identificador" => "sec0050" "titulo" => "Measurement of Caspase-3 and Caspase-9 activity" ] 8 => array:2 [ "identificador" => "sec0055" "titulo" => "Dual luciferase reporter assay" ] 9 => array:2 [ "identificador" => "sec0060" "titulo" => "RNA pulldown assay" ] 10 => array:2 [ "identificador" => "sec0065" "titulo" => "Terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL)" ] 11 => array:2 [ "identificador" => "sec0070" "titulo" => "Flow cytometry apoptotic analysis" ] 12 => array:2 [ "identificador" => "sec0075" "titulo" => "PAS (Periodic Acid-Schiff) staining" ] 13 => array:2 [ "identificador" => "sec0080" "titulo" => "Histological analysis" ] 14 => array:2 [ "identificador" => "sec0085" "titulo" => "Observation of mitochondrial morphology" ] 15 => array:2 [ "identificador" => "sec0090" "titulo" => "U0126 treatment" ] 16 => array:2 [ "identificador" => "sec0095" "titulo" => "Statistical analysis" ] ] ] 6 => array:3 [ "identificador" => "sec0100" "titulo" => "Results" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0105" "titulo" => "Establishment of LPS-induced AKI mice model and mouse renal tubular epithelial cell model" ] 1 => array:2 [ "identificador" => "sec0110" "titulo" => "miR-322-5p promotes the apoptosis of AKI renal tubular epithelial cells" ] 2 => array:2 [ "identificador" => "sec0115" "titulo" => "miR-322-5p promotes the apoptosis of AKI renal tubular epithelial cells via inhibiting Tbx21" ] 3 => array:2 [ "identificador" => "sec0120" "titulo" => "Tbx21 modulates mitochondrial fission and cell apoptosis through MAPK/ERK signaling pathway" ] ] ] 7 => array:2 [ "identificador" => "sec0125" "titulo" => "Discussion" ] 8 => array:2 [ "identificador" => "sec0130" "titulo" => "Conclusion" ] 9 => array:2 [ "identificador" => "sec0135" "titulo" => "Authors’ contributions" ] 10 => array:2 [ "identificador" => "sec0140" "titulo" => "Statement of ethics" ] 11 => array:2 [ "identificador" => "sec0145" "titulo" => "Data availability statement" ] 12 => array:2 [ "identificador" => "sec0150" "titulo" => "Funding sources" ] 13 => array:2 [ "identificador" => "sec0155" "titulo" => "Conflict of interest" ] 14 => array:2 [ "identificador" => "xack714455" "titulo" => "Acknowledgement" ] 15 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2022-11-15" "fechaAceptado" => "2023-01-25" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1751180" "palabras" => array:4 [ 0 => "miR-322-5p" 1 => "Acute kidney injury" 2 => "Tbx21" 3 => "MAPK/ERK signaling pathway" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1751181" "palabras" => array:4 [ 0 => "miR-322-5p" 1 => "Insuficiencia renal aguda" 2 => "Tbx21" 3 => "Vía de señalización de MAPK/ERK" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Introduction and objectives</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Acute kidney injury (AKI) is a common devastating complication characterized by an abrupt loss of renal function. It is of great significance to explore promising biomarkers for AKI treatment.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Materials and methods</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Here, we established LPS (lipopolysaccharide)-induced AKI mice models and LPS-induced AKI mouse renal tubular epithelial cell model. The severity of AKI was determined by the levels of BUN (blood urea nitrogen) and SCr (serum creatinine), the observation of pathological section as well as the renal tubular injury score. The apoptosis was determined by the measurement of Caspase-3 and Caspase-9 activities, and cell apoptosis assays. qRT-PCR (quantitative real-time PCR) and western blot revealed that miR-322-5p (microRNA-322-5p) was up-regulated in LPS -induced AKI models while Tbx21 (T-box transcription factor 21) was down-regulated in LPS-induced AKI models. Dual-luciferase reporter and RNA pulldown assays detected the interaction of Tbx21 with miR-322-5p.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">We found that miR-322-5p was overtly over-expressed in the <span class="elsevierStyleItalic">in vitro</span> LPS-induced AKI model and promoted the apoptosis of AKI mouse renal tubular epithelial cells <span class="elsevierStyleItalic">via</span> inhibiting Tbx21, which suppressed the mitochondrial fission and cell apoptosis through MAPK/ERK (mitogen-activated protein kinase/extracellular signal-related kinase) pathway.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusions</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">We demonstrated that miR-322-5p promotes LPS-induced mouse AKI by regulating Tbx21/MAPK/ERK axis, which might provide new sights for AKI research.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction and objectives" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Materials and methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Introducción y objetivos</span><p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">La insuficiencia renal aguda (IRA) es una complicación común devastadora caracterizada por una pérdida abrupta de la función renal. Es de vital importancia explorar biomarcadores prometedores para el tratamiento de la IRA.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Materiales y métodos</span><p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Establecimos aquí un modelo de ratones con IRA inducido por lipopolisacáridos (LPS) y un modelo de células epiteliales del túbulo renal en ratones. La severidad de IRA fue determinada por los niveles de NUS (nitrógeno ureico en sangre) y SCr (creatinina sérica), la observación de la sección patológica, así como la puntuación del daño renal tubular. La apoptosis fue determinada mediante la medición de las actividades de Caspasa-3 y Caspasa-9, y los ensayos de apoptosis celular. Las pruebas qRT-PCR (PCR cuantitativa en tiempo real) y Western blot revelaron que miR-322-5p (microRNA-322-5p) se incrementaba en los modelos de IRA inducidos por LPS, mientras que Tbx21 (factor 21 de transcripción de T-box) disminuía en los modelos de IRA inducidos por LPS. Los ensayos del reportador de luciferasa dual y de precipitación pulldown de ARN detectaron la interacción entre Tbx21 y miR-322-5p.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Resultados</span><p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">Encontramos que miR-322-5p se hallaba manifiestamente incrementado en el modelo in vitro de IRA inducido por LPS, y promovió la apoptosis de células epiteliales del túbulo renal de IRA en ratones mediante la inhibición de Tbx21, lo cual suprimió la fisión mitocondrial y la apoptosis a través de la vía MAPK/ERK (proteína quinasa activada por mitógeno/quinasa relacionada con la señal extracelular).</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusiones</span><p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">Demostramos que miR-322-5p promueve la IRA inducida por LPS en ratones mediante la regulación del eje Tbx21/MAPK/ERK, lo cual podría aportar una percepción nueva para la investigación sobre la IRA.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Introducción y objetivos" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Materiales y métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] ] "apendice" => array:1 [ 0 => array:1 [ "seccion" => array:1 [ 0 => array:4 [ "apendice" => "<p id="par0240" class="elsevierStylePara elsevierViewall">The following are the supplementary data to this article:<elsevierMultimedia ident="fig0005"></elsevierMultimedia></p>" "etiqueta" => "Appendix A" "titulo" => "Supplementary data" "identificador" => "sec0165" ] ] ] ] "multimedia" => array:7 [ 0 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2463 "Ancho" => 3342 "Tamanyo" => 601900 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Establishment of LPS-induced AKI mice model and mouse renal tubular epithelial cell model. For LPS-induced AKI mice model, mice were intraperitoneally injected with LPS (10<span class="elsevierStyleHsp" style=""></span>mg/kg) for 0, 12, and 24<span class="elsevierStyleHsp" style=""></span>h. (A, B) The BUN and SCr levels were examined <span class="elsevierStyleItalic">via</span> qRT-PCR analysis (one-way ANOVA, Tukey). (C) The images of pathological section of LPS-treated mouse kidney tissue samples stained by PAS were shown (scale bar: upper: 20<span class="elsevierStyleHsp" style=""></span>μm, lower: 5<span class="elsevierStyleHsp" style=""></span>μm). Red arrows indicate swelling of renal tubular epithelial cells; black arrows indicate tubular lumen shrinkage; white arrows indicate vacuolar deformation. (D) The LPS-treated mice model's renal tubular injury score was marked ranging from 0 to 4: 0 (no change); 1 (changes affecting<span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>25%); 2 (changes affecting 25–50%); 3 (changes affecting 50–75%); 4 (changes affecting<span class="elsevierStyleHsp" style=""></span>><span class="elsevierStyleHsp" style=""></span>75%) (one-way ANOVA, Tukey). (E, F) The activity of Caspase-3 and Caspase-9 of renal tubular cell in LPS-induced AKI mice model was shown (one-way ANOVA, Tukey). (G) The apoptosis of LPS-treated mice's kidney tissue section was determined by TUNEL assay. (H) The TUNEL-positive cells were measured in the LPS-treated mouse renal tubular epithelial cell model at different time points (one-way ANOVA, Tukey). (I) For LPS-treated mouse renal tubular epithelial cell model, cells were treated with LPS (5<span class="elsevierStyleHsp" style=""></span>μg/mL) for 0, 12, and 24<span class="elsevierStyleHsp" style=""></span>h. The apoptosis rate of <span class="elsevierStyleItalic">in vitro</span> LPS-induced AKI model was increased as time went by (one-way ANOVA, Tukey). (J, K) Caspase-3 and Caspase-9 activities were determined in LPS-treated mouse renal tubular epithelial cell model (one-way ANOVA, Tukey). **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01, *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05.</p>" ] ] 1 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2448 "Ancho" => 3342 "Tamanyo" => 398999 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">miR-322-5p promotes the apoptosis of AKI renal tubular epithelial cells. (A) Relative expression levels of putative miRNAs in LPS-treated mouse renal tubular epithelial cell model (5<span class="elsevierStyleHsp" style=""></span>μg/mL; 24<span class="elsevierStyleHsp" style=""></span>h) were detected <span class="elsevierStyleItalic">via</span> qRT-PCR (Student's <span class="elsevierStyleItalic">t</span>-test). (B) The expression levels of miR-126a-5p and miR-322-5p in renal tubular cells of AKI mice models were measured <span class="elsevierStyleItalic">via</span> qRT-PCR in mice under LPS treatment for different time (one-way ANOVA, Tukey). (C, D) The expression levels of miR-126a-5p and miR-322-5p were measured in mouse renal tubular epithelial cells under LPS treatment at the same dose of 5<span class="elsevierStyleHsp" style=""></span>μg/mL for different time or with different doses for 24<span class="elsevierStyleHsp" style=""></span>h (one-way ANOVA, Tukey). (E, F) The apoptosis rate was increased by miR-322-5p mimic and decreased by miR-322-5p inhibitor (Student's <span class="elsevierStyleItalic">t</span>-test). (G, H) Caspase-3 activity was promoted by miR-322-5p and was inhibited by miR-322-5p inhibitor (Student's <span class="elsevierStyleItalic">t</span>-test). (I, J) Caspase-9 activity was enhanced by miR-322-5p and was repressed by miR-322-5p inhibitor (Student's <span class="elsevierStyleItalic">t</span>-test). The experiments as shown in (E–J) were performed in LPS-induced AKI mouse renal tubular epithelial cell model (5<span class="elsevierStyleHsp" style=""></span>μg/mL; 24<span class="elsevierStyleHsp" style=""></span>h). **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01, *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05.</p>" ] ] 2 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 3666 "Ancho" => 3508 "Tamanyo" => 929603 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">miR-322-5p promotes the apoptosis of AKI renal tubular epithelial cells by targeting Tbx21. (A) Six candidate downstream mRNAs of miR-322-5p were screened out by starBase (<span class="elsevierStyleInterRef" id="intr0005" href="http://starbase.sysu.edu.cn/">http://starbase.sysu.edu.cn/</span>). (B) The expression levels of six mRNAs were detected in renal tubular cells of LPS-induced AKI mice model (10<span class="elsevierStyleHsp" style=""></span>mg/kg; 24<span class="elsevierStyleHsp" style=""></span>h) and LPS-induced AKI mouse renal tubular epithelial cell model (5<span class="elsevierStyleHsp" style=""></span>μg/mL; 24<span class="elsevierStyleHsp" style=""></span>h) (Student's <span class="elsevierStyleItalic">t</span>-test). (C) qRT-PCR tested that Tbx21 mRNA level was reduced under miR-322-5p mimic treatment (Student's <span class="elsevierStyleItalic">t</span>-test). (D) Western blot revealed that the protein level of Tbx21 was lowered under miR-322-5p mimic treatment (Student's <span class="elsevierStyleItalic">t</span>-test). (E, F) Tbx21 mRNA and protein level under miR-322-5p inhibition were tested by qRT-PCR and western blot, respectively. Student's <span class="elsevierStyleItalic">t</span>-test. (G, H) The knockdown efficiency and overexpression efficiency of Tbx21 were verified by qRT-PCR analysis (one-way ANOVA, Tukey; Student's <span class="elsevierStyleItalic">t</span>-test). (I) The apoptosis rate was increased by Tbx21 knockdown (one-way ANOVA, Dunnett). (J) The apoptosis rate was decreased by Tbx21 overexpression (Student's <span class="elsevierStyleItalic">t</span>-test). (K, L) Caspase-3 activity was measured responding to Tbx21 knockdown (one-way ANOVA, Dunnett) and Tbx21 up-regulation (Student's <span class="elsevierStyleItalic">t</span>-test). (M, N) Caspase-9 activity was measured in cells with Tbx21 knockdown (one-way ANOVA, Dunnett) or overexpression (Student's <span class="elsevierStyleItalic">t</span>-test). (O) The luciferase activity was promoted by miR-322-5p overexpression in pmirGLO-Tbx21 3′UTR-WT group (two-way ANOVA, Tukey). (P) miR-322-5p was relatively enriched in Bio-Tbx21-WT group (one-way ANOVA, Tukey). (Q–S) Tbx21 deficiency could weaken the repressive effect of miR-322-5p inhibition on the apoptosis <span class="elsevierStyleItalic">via</span> measuring the apoptosis rate, Caspase-3 and Caspase-9 activities, respectively (one-way ANOVA, Tukey). The experiments as shown in C–S were performed in LPS-induced AKI mouse renal tubular epithelial cell model (5<span class="elsevierStyleHsp" style=""></span>μg/mL; 24<span class="elsevierStyleHsp" style=""></span>h). **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01, *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05.</p>" ] ] 3 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 3275 "Ancho" => 3342 "Tamanyo" => 688409 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Tbx21 modulates mitochondrial fission and cell apoptosis through MAPK/ERK signaling pathway. (A, B) The protein level of p-ERK1/2 was increased in renal tubular cell of LPS-induced AKI mice model (10<span class="elsevierStyleHsp" style=""></span>mg/kg; 24<span class="elsevierStyleHsp" style=""></span>h) and LPS-induced AKI mouse renal tubular epithelial cell model (5<span class="elsevierStyleHsp" style=""></span>μg/mL; 24<span class="elsevierStyleHsp" style=""></span>h), individually (Student's <span class="elsevierStyleItalic">t</span>-test). (C, D) The protein level of p-ERK1/2 was increased by Tbx21 knockdown (one-way ANOVA, Dunnett) and was decreased by overexpressed Tbx21 in LPS-induced AKI mouse renal tubular epithelial cell model (5<span class="elsevierStyleHsp" style=""></span>μg/mL; 24<span class="elsevierStyleHsp" style=""></span>h) (Student's <span class="elsevierStyleItalic">t</span>-test). (E) The mitochondria became rounded, small and fragmented in LPS-treated mouse renal tubular epithelial cell model (5<span class="elsevierStyleHsp" style=""></span>μg/mL; 24<span class="elsevierStyleHsp" style=""></span>h). Scale bar<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleHsp" style=""></span>μm. (F) The mean branch length was reduced in LPS-treated mouse renal tubular epithelial cell model (5<span class="elsevierStyleHsp" style=""></span>μg/mL; 0, 12, 24<span class="elsevierStyleHsp" style=""></span>h) (one-way ANOVA, Tukey). (G) The mitochondria became rounded, small and fragmented after down-regulating Tbx21. Scale bar<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleHsp" style=""></span>μm. (H) The mean branch length was reduced after Tbx21 knockdown (one-way ANOVA, Tukey). (I) The mitochondria became tabulated after overexpressing Tbx21. Scale bar<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleHsp" style=""></span>μm. (J) The mean branch length was increased after down-regulation of Tbx21 (Student's <span class="elsevierStyleItalic">t</span>-test). (K–O) U0126 treatment was used to inhibit the activity of MAPK/ERK signaling pathway. The inhibition of this pathway weakened the promoting effect of Tbx21 knockdown on the apoptosis <span class="elsevierStyleItalic">via</span> observing the mitochondrial morphology and measuring the mitochondrial mean branch length, the apoptosis rate, Caspase-3 and Caspase-9 activities, respectively (one-way ANOVA, Tukey). Scale bar<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleHsp" style=""></span>μm. The experiments as shown in (G–O) were performed in LPS-induced AKI mouse renal tubular epithelial cell model (5<span class="elsevierStyleHsp" style=""></span>μg/mL; 24<span class="elsevierStyleHsp" style=""></span>h). **<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.01, *<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05.</p>" ] ] 4 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">mimic-NC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">uuguaagguucgacgaccuuaa \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">mimic-miR-322-5p \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">agguuuuguacuuaacgacgac \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">inhibitor-NC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">uaaguagucgugucccucaaa \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">inhibitor-miR-322-5p \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">gucgucguuaaguacaaaaccu \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3396396.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Sequences used for transfections.</p>" ] ] 5 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at2" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Tbx 3′U TR-WT \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleMonospace">GAAAATGCCGCTGAATTGGAAGGTGCCCACTAACTTAGAAAACAGACGCGGG GCTGAGAGCCCCGAGCTCTTCCCCATCCCTTCCCTGTATAGTGATTGGTTGGAG AGGAAGCGGGGCAAGAAGGATTCTGGGGTTTACTTCTTGTTTCCTGGCCCACA AGGAAA TACGACAGGAGTGTCCCCTGCCCCTTTCTCTGCCCGAACTACAGTCA CGA.CCTGGTGCTGCTTCTGACCCCATGGTTCCATGGAGAACGGAGAATGGAC TCCAGAGAGTTTTGGACCCAGAGGGACTTCATGGCTTTCTGCGAGGTGGAGGG GTCGGGGTGGGGAGTCCAGGAGAGCTGCTCTCTTCCCCTGTCCAGTCAGTAAC TTTCAACTGTTGGTCTGACACCTGTGTTAATCTCTGACCTGAAAGTGAAGATA CACGCATTTTTACAACAGCCAGCCAAACAGAGAAGACTCAGGTGACTGCGGG CGGACTGGGCCACCTGCGAGGAGACAAGAGAGGGTGGGTGCAGAGGAAGGGT TTGAAGGGTGCACATTTCACCAGGCGAGGTCACTTTGAACCGGTGTGTACACA <span class="elsevierStyleUnderline">CACGGGTGTCTCIIIIIIA</span><span class="elsevierStyleUnderline">TTTCTTCGGGAGGGGGGAGGCTATTTATTGTAGAG</span> AGTGGTGTCTGGATGTATTTCTTCTGTTTTGCATCACTTTCTGGAAATAAACAT GGACCTGGTAAA</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Tbx 3′U TR-Mut \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleMonospace">GAAAATGCCGCTGAATTGGAAGGTGCCCACTAACTTAGAAAACAGACGCGGG GCTGAGAGCCCCGAGCTCTTCCCCATCCCTTCCCTGTATAGTGATTGGTTGGAG AGGAAGCGGGGCAAGAAGGATTCTGGGGTTTACTTCTTGTTTCCTGGCCCACA AGGAAA TACGACAGGAGTGTCCCCTGCCCCTTTCTCTGCCCGAACTACAGTGT CGTTGCACGACGACGATCTGACCCCATGGTTCCATGGAGAACGGAGAATGGA CTCCAGAGAGTTTTGGACCCAGAGGGACTTCATGGCTTTCTGCGAGGTGGAGG GGTCGGGGTGGGGAGTCCAGGAGAGCTGCTCTCTTCCCCTGTCCAGTCAGTAA CTTTCAACTGTTGGTCTGACACCTGTGTTAATCTCTGACCTGAAAGTGAAGAT ACACGCATTTTTACAACAGCCAGCCAAACAGAGAAGACTCAGGTGACTGCGG GCGGACTGGGCCACCTGCGAGGAGACAAGAGAGGGTGGGTGCAGAGGAAGGG TTTGAAGGGTGCACATTTCACCAGGCGAGGTCACTTTGAACCGGTGTGTACAC <span class="elsevierStyleUnderline">ACACGGGTGTCTcllllll ATTTCTTCGGGAGGGGGGAGGCTATTTATTGTAG</span> GAGTGGTGTCTGGATGTATTTCTTCTGTTTTGCATCACTTTCTGGAAATAAACA TGGACCTGGTAAA</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3396395.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">The specific sequence of the 3′UTR region used in the luciferase experiments.</p>" ] ] 6 => array:5 [ "identificador" => "fig0005" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "mmc1.jpeg" "Alto" => 5012 "Ancho" => 7408 "Tamanyo" => 947734 ] ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:50 [ 0 => array:3 [ "identificador" => "bib0255" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Acute kidney injury: a guide to diagnosis and management" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Rahman" 1 => "F. Shad" 2 => "M.C. Smith" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Am Fam Physician" "fecha" => "2012" "volumen" => "86" "paginaInicial" => "631" "paginaFinal" => "639" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23062091" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0260" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The aftermath of acute kidney injury: a narrative review of long-term mortality and renal function" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "G. Fortrie" 1 => "H.R.H. de Geus" 2 => "M.G.H. Betjes" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s13054-019-2314-z" "Revista" => array:3 [ "tituloSerie" => "Crit Care (Lond, Engl)" "fecha" => "2019" "volumen" => "23" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0265" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Acute kidney injury" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A. Farrar" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cnur.2018.07.001" "Revista" => array:5 [ "tituloSerie" => "Nurs Clin N Am" "fecha" => "2018" "volumen" => "53" "paginaInicial" => "499" "paginaFinal" => "510" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0270" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Acute kidney injury" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R. Bellomo" 1 => "J.A. Kellum" 2 => "C. Ronco" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/s0140-6736(11)61454-2" "Revista" => array:5 [ "tituloSerie" => "Lancet (Lond, Engl)" "fecha" => "2012" "volumen" => "380" "paginaInicial" => "756" "paginaFinal" => "766" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0275" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Pu" 1 => "J. Chen" 2 => "Z. Tao" 3 => "L. Miao" 4 => "X. Qi" 5 => "Y. Wang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00018-018-2940-7" "Revista" => array:6 [ "tituloSerie" => "Cell Mol Life Sci" "fecha" => "2019" "volumen" => "76" "paginaInicial" => "441" "paginaFinal" => "451" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30374521" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0280" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNAs in AKI and kidney transplantation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "K.J. Ledeganck" 1 => "E.M. Gielis" 2 => "D. Abramowicz" 3 => "P. Stenvinkel" 4 => "P.G. Shiels" 5 => "A.H. Van Craenenbroeck" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2215/cjn.08020718" "Revista" => array:6 [ "tituloSerie" => "Clin J Am Soc Nephrol" "fecha" => "2019" "volumen" => "14" "paginaInicial" => "454" "paginaFinal" => "468" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30602462" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0285" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Noncoding RNAs in acute kidney injury" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "G.L. Ren" 1 => "J. Zhu" 2 => "J. Li" 3 => "X.M. Meng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jcp.27203" "Revista" => array:6 [ "tituloSerie" => "J Cell Physiol" "fecha" => "2019" "volumen" => "234" "paginaInicial" => "2266" "paginaFinal" => "2276" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30146769" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0290" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Urinary miR-16 transactivated by C/EBPβ reduces kidney function after ischemia/reperfusion-induced injury" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "H.H. Chen" 1 => "Y.F. Lan" 2 => "H.F. Li" 3 => "C.F. Cheng" 4 => "P.F. Lai" 5 => "W.H. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/srep27945" "Revista" => array:5 [ "tituloSerie" => "Sci Rep" "fecha" => "2016" "volumen" => "6" "paginaInicial" => "27945" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27297958" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0295" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNA-494 reduces ATF3 expression and promotes AKI" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y.F. Lan" 1 => "H.H. Chen" 2 => "P.F. Lai" 3 => "C.F. Cheng" 4 => "Y.T. Huang" 5 => "Y.C. Lee" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1681/asn.2012050438" "Revista" => array:5 [ "tituloSerie" => "J Am Soc Nephrol" "fecha" => "2012" "volumen" => "23" "paginaInicial" => "2012" "paginaFinal" => "2023" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0300" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Human amniotic epithelial cells inhibit CD4+ T cell activation in acute kidney injury patients by influencing the miR-101-c-Rel-IL-2 pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Liu" 1 => "R. Hua" 2 => "Z. Gong" 3 => "B. Shang" 4 => "Y. Huang" 5 => "L. Guo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.molimm.2016.11.019" "Revista" => array:6 [ "tituloSerie" => "Mol Immunol" "fecha" => "2017" "volumen" => "81" "paginaInicial" => "76" "paginaFinal" => "84" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27898347" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0305" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MiRNA-340-5p mediates the functional and infiltrative promotion of tumor-infiltrating CD8(+) T lymphocytes in human diffuse large B cell lymphoma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y. Xu" 1 => "Z. Liu" 2 => "L. Lv" 3 => "P. Li" 4 => "B. Xiu" 5 => "W. Qian" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s13046-020-01752-2" "Revista" => array:5 [ "tituloSerie" => "J Exp Clin Cancer Res" "fecha" => "2020" "volumen" => "39" "paginaInicial" => "238" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33168024" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0310" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MiRNA-671-5p promotes prostate cancer development and metastasis by targeting NFIA/CRYAB axis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Z. Zhu" 1 => "L. Luo" 2 => "Q. Xiang" 3 => "J. Wang" 4 => "Y. Liu" 5 => "Y. Deng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/s41419-020-03138-w" "Revista" => array:5 [ "tituloSerie" => "Cell Death Dis" "fecha" => "2020" "volumen" => "11" "paginaInicial" => "949" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33144585" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0315" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. Ding" 1 => "X. Ding" 2 => "J. Zheng" 3 => "B. Wang" 4 => "Y. Li" 5 => "H. Xiang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/s41419-020-03135-z" "Revista" => array:5 [ "tituloSerie" => "Cell Death Dis" "fecha" => "2020" "volumen" => "11" "paginaInicial" => "929" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33116120" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0320" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Correlation of ERK/MAPK signaling pathway with proliferation and apoptosis of colon cancer cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "G. Zhou" 1 => "J. Yang" 2 => "P. Song" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/ol.2018.9857" "Revista" => array:6 [ "tituloSerie" => "Oncol Lett" "fecha" => "2019" "volumen" => "17" "paginaInicial" => "2266" "paginaFinal" => "2270" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30675292" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0325" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Long non-coding RNA URHC regulates cell proliferation and apoptosis via ZAK through the ERK/MAPK signaling pathway in hepatocellular carcinoma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "W.H. Xu" 1 => "J.B. Zhang" 2 => "Z. Dang" 3 => "X. Li" 4 => "T. Zhou" 5 => "J. Liu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.7150/ijbs.8232" "Revista" => array:6 [ "tituloSerie" => "Int J Biol Sci" "fecha" => "2014" "volumen" => "10" "paginaInicial" => "664" "paginaFinal" => "676" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25013376" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0330" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "RIPK3 mediates renal tubular epithelial cell apoptosis in endotoxin-induced acute kidney injury" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Zhang" 1 => "R. Li" 2 => "W. Dong" 3 => "H. Yang" 4 => "L. Zhang" 5 => "Chen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/mmr.2019.10416" "Revista" => array:6 [ "tituloSerie" => "Mol Med Rep" "fecha" => "2019" "volumen" => "20" "paginaInicial" => "1613" "paginaFinal" => "1620" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31257491" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0335" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cytoprotective effect of heat shock protein 27 against lipopolysaccharide-induced apoptosis of renal epithelial HK-2 cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "C. Li" 1 => "J. Wu" 2 => "Y. Li" 3 => "G. Xing" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1159/000475636" "Revista" => array:6 [ "tituloSerie" => "Cell Physiol Biochem" "fecha" => "2017" "volumen" => "41" "paginaInicial" => "2211" "paginaFinal" => "2220" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28448995" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0340" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dexmedetomidine alleviates lipopolysaccharide-induced acute kidney injury by inhibiting p75NTR-mediated oxidative stress and apoptosis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Z. Wang" 1 => "J. Wu" 2 => "Z. Hu" 3 => "C. Luo" 4 => "P. Wang" 5 => "Y. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1155/2020/5454210" "Revista" => array:2 [ "tituloSerie" => "Oxid Med Cell Longevity" "fecha" => "2020" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0345" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "K.J. Livak" 1 => "T.D. Schmittgen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1006/meth.2001.1262" "Revista" => array:6 [ "tituloSerie" => "Methods (San Diego, Calif)" "fecha" => "2001" "volumen" => "25" "paginaInicial" => "402" "paginaFinal" => "408" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11846609" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0350" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "hsa-miR-3177-5p and hsa-miR-3178 inhibit 5-HT1A expression by binding the 3′-UTR region in vitro" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "X. Wu" 1 => "M. Ding" 2 => "Y. Liu" 3 => "X. Xia" 4 => "F.L. Xu" 5 => "J. Yao" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fnmol.2019.00013" "Revista" => array:5 [ "tituloSerie" => "Front Mol Neurosci" "fecha" => "2019" "volumen" => "12" "paginaInicial" => "13" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30766477" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0355" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ropivacaine promotes apoptosis of hepatocellular carcinoma cells through damaging mitochondria and activating caspase-3 activity" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "W. Wang" 1 => "M. Zhu" 2 => "Z. Xu" 3 => "W. Li" 4 => "X. Dong" 5 => "Y. Chen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s40659-019-0242-7" "Revista" => array:4 [ "tituloSerie" => "Biol Res" "fecha" => "2019" "volumen" => "52" "paginaInicial" => "36" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0360" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MiR-21-5p induces pyroptosis in colorectal cancer via TGFBI" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "R. Jiang" 1 => "X. Chen" 2 => "S. Ge" 3 => "Q. Wang" 4 => "Y. Liu" 5 => "H. Chen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fonc.2020.610545" "Revista" => array:5 [ "tituloSerie" => "Front Oncol" "fecha" => "2020" "volumen" => "10" "paginaInicial" => "610545" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33614494" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0365" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The DNMT1-PAS1-PH20 axis drives breast cancer growth and metastasis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y. Fu" 1 => "X. Zhang" 2 => "X. Liu" 3 => "P. Wang" 4 => "W. Chu" 5 => "W. Zhao" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/s41392-022-00896-1" "Revista" => array:4 [ "tituloSerie" => "Signal Transduct Target Therapy" "fecha" => "2022" "volumen" => "7" "paginaInicial" => "81" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0370" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNA-1 affects the development of the neural crest and craniofacial skeleton via the mitochondrial apoptosis pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "N. Zhao" 1 => "W. Qin" 2 => "D. Wang" 3 => "A.G. Raquel" 4 => "L. Yuan" 5 => "Y. Mao" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/etm.2021.9810" "Revista" => array:4 [ "tituloSerie" => "Exp Therap Med" "fecha" => "2021" "volumen" => "21" "paginaInicial" => "379" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0375" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Knockdown of lncRNA MALAT1 ameliorates acute kidney injury by mediating the miR-204/APOL1 pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "H.Y. Lu" 1 => "G.Y. Wang" 2 => "J.W. Zhao" 3 => "H.T. Jiang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jcla.23881" "Revista" => array:5 [ "tituloSerie" => "J Clin Lab Anal" "fecha" => "2021" "volumen" => "35" "paginaInicial" => "e23881" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34240756" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0380" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Periodic acid-Schiff staining method for function detection of liver cells is affected by 2% horse serum in induction medium" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "H. Hui" 1 => "W. Ma" 2 => "J. Cui" 3 => "M. Gong" 4 => "Y. Wang" 5 => "Y. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/mmr.2017.7587" "Revista" => array:6 [ "tituloSerie" => "Mol Med Rep" "fecha" => "2017" "volumen" => "16" "paginaInicial" => "8062" "paginaFinal" => "8068" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28944920" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0385" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Application of proteomics to identify the target molecules involved in Lonicera japonica-induced photokilling in human lung cancer CH27 cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J.C. Liao" 1 => "W.T. Chang" 2 => "Y.H. Lan" 3 => "M.J. Hour" 4 => "H.Z. Lee" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/1472-6882-13-244" "Revista" => array:4 [ "tituloSerie" => "BMC Complement Alternat Med" "fecha" => "2013" "volumen" => "13" "paginaInicial" => "244" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0390" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Blockade of ERK1/2 by U0126 alleviates uric acid-induced EMT and tubular cell injury in rats with hyperuricemic nephropathy" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Tao" 1 => "Y. Shi" 2 => "L. Tang" 3 => "Y. Wang" 4 => "L. Fang" 5 => "W. Jiang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1152/ajprenal.00480.2018" "Revista" => array:5 [ "tituloSerie" => "Am J Physiol Renal Physiol" "fecha" => "2019" "volumen" => "316" "paginaInicial" => "F660" "paginaFinal" => "F673" ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0395" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Deciphering miRNAs’ action through miRNA editing" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M. Correia de Sousa" 1 => "M. Gjorgjieva" 2 => "D. Dolicka" 3 => "C. Sobolewski" 4 => "M. Foti" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3390/ijms20246249" "Revista" => array:3 [ "tituloSerie" => "Int J Mol Sci" "fecha" => "2019" "volumen" => "20" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0400" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "mir-329 restricts tumor growth by targeting grb2 in pancreatic cancer" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "X. Wang" 1 => "X. Lu" 2 => "T. Zhang" 3 => "C. Wen" 4 => "M. Shi" 5 => "X. Tang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.18632/oncotarget.7375" "Revista" => array:6 [ "tituloSerie" => "Oncotarget" "fecha" => "2016" "volumen" => "7" "paginaInicial" => "21441" "paginaFinal" => "21453" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26885689" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0405" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNA-142-3p induces atherosclerosis-associated endothelial cell apoptosis by directly targeting rictor" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "B. Qin" 1 => "Y. Shu" 2 => "L. Long" 3 => "H. Li" 4 => "X. Men" 5 => "L. Feng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1159/000490932" "Revista" => array:6 [ "tituloSerie" => "Cell Physiol Biochem" "fecha" => "2018" "volumen" => "47" "paginaInicial" => "1589" "paginaFinal" => "1603" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29949787" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0410" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "In human alloreactive CD4+ T-cells, dichloroacetate inhibits aerobic glycolysis, induces apoptosis and favors differentiation towards the regulatory T-cell subset instead of effector T-cell subsets" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "T. Eleftheriadis" 1 => "M. Sounidaki" 2 => "G. Pissas" 3 => "G. Antoniadi" 4 => "V. Liakopoulos" 5 => "I. Stefanidis" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/mmr.2016.4912" "Revista" => array:6 [ "tituloSerie" => "Mol Med Rep" "fecha" => "2016" "volumen" => "13" "paginaInicial" => "3370" "paginaFinal" => "3376" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26935268" "web" => "Medline" ] ] ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0415" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Downregulation of miR-322 promotes apoptosis of GC-2 cell by targeting Ddx3x" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Q. Che" 1 => "W. Wang" 2 => "P. Duan" 3 => "F. Fang" 4 => "C. Liu" 5 => "T. Zhou" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s12958-019-0506-7" "Revista" => array:5 [ "tituloSerie" => "Reprod Biol Endocrinol" "fecha" => "2019" "volumen" => "17" "paginaInicial" => "63" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31382975" "web" => "Medline" ] ] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0420" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Silencing UBE4B induces nasopharyngeal carcinoma apoptosis through the activation of caspase3 and p53" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. Weng" 1 => "Y. Chen" 2 => "Y. Wu" 3 => "X. Liu" 4 => "H. Mao" 5 => "X. Fang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2147/ott.S196132" "Revista" => array:6 [ "tituloSerie" => "OncoTargets Therapy" "fecha" => "2019" "volumen" => "12" "paginaInicial" => "2553" "paginaFinal" => "2561" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31040698" "web" => "Medline" ] ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0425" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNA-29c inhibits proliferation and promotes apoptosis in non-small cell lung cancer cells by targeting VEGFA" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S. Zhan" 1 => "C. Wang" 2 => "F. Yin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/mmr.2018.8678" "Revista" => array:6 [ "tituloSerie" => "Mol Med Rep" "fecha" => "2018" "volumen" => "17" "paginaInicial" => "6705" "paginaFinal" => "6710" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29512752" "web" => "Medline" ] ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0430" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Karbowski" 1 => "Y.J. Lee" 2 => "B. Gaume" 3 => "S.Y. Jeong" 4 => "S. Frank" 5 => "A. Nechushtan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1083/jcb.200209124" "Revista" => array:6 [ "tituloSerie" => "J Cell Biol" "fecha" => "2002" "volumen" => "159" "paginaInicial" => "931" "paginaFinal" => "938" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12499352" "web" => "Medline" ] ] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0435" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Tanshinone IIA promotes IL2-mediated SW480 colorectal cancer cell apoptosis by triggering INF2-related mitochondrial fission and activating the Mst1-Hippo pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Qian" 1 => "D. Fang" 2 => "H. Lu" 3 => "Y. Cao" 4 => "J. Zhang" 5 => "R. Ding" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.biopha.2018.09.170" "Revista" => array:5 [ "tituloSerie" => "Biomed Pharmacotherapy" "fecha" => "2018" "volumen" => "108" "paginaInicial" => "1658" "paginaFinal" => "1669" ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0440" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Acute kidney injury risk assessment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "W. Jiang" 1 => "J. Xu" 2 => "B. Shen" 3 => "Y. Wang" 4 => "J. Teng" 5 => "X. Ding" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1159/000484959" "Revista" => array:6 [ "tituloSerie" => "Contrib Nephrol" "fecha" => "2018" "volumen" => "193" "paginaInicial" => "13" "paginaFinal" => "20" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29393156" "web" => "Medline" ] ] ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0445" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNAs in acute kidney injury" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "T.F. Jones" 1 => "S. Bekele" 2 => "M.J. O’Dwyer" 3 => "J.R. Prowle" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1159/000490204" "Revista" => array:6 [ "tituloSerie" => "Nephron" "fecha" => "2018" "volumen" => "140" "paginaInicial" => "124" "paginaFinal" => "128" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29870986" "web" => "Medline" ] ] ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0450" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Q. Wei" 1 => "H. Sun" 2 => "S. Song" 3 => "Y. Liu" 4 => "P. Liu" 5 => "M.J. Livingston" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1172/jci121859" "Revista" => array:6 [ "tituloSerie" => "J Clin Investig" "fecha" => "2018" "volumen" => "128" "paginaInicial" => "5448" "paginaFinal" => "5464" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30325740" "web" => "Medline" ] ] ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0455" "etiqueta" => "41" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "miR-214 ameliorates acute kidney injury via targeting DKK3 and activating of Wnt/β-catenin signaling pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "X. Zhu" 1 => "W. Li" 2 => "H. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s40659-018-0179-2" "Revista" => array:5 [ "tituloSerie" => "Biol Res" "fecha" => "2018" "volumen" => "51" "paginaInicial" => "31" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30180910" "web" => "Medline" ] ] ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0460" "etiqueta" => "42" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A. Valinezhad Orang" 1 => "R. Safaralizadeh" 2 => "M. Kazemzadeh-Bavili" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1155/2014/970607" "Revista" => array:2 [ "tituloSerie" => "Int J Genomics" "fecha" => "2014" ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0465" "etiqueta" => "43" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sox9-increased miR-322-5p facilitates BMP2-induced chondrogenic differentiation by targeting Smad7 in mesenchymal stem cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y. Zeng" 1 => "C. Du" 2 => "P. Xiao" 3 => "Y. Lei" 4 => "P. Zhao" 5 => "Z. Zhu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1155/2021/9778207" "Revista" => array:2 [ "tituloSerie" => "Stem Cells Int" "fecha" => "2021" ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0470" "etiqueta" => "44" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "miR-322-5p targets IGF-1 and is suppressed in the heart of rats with pulmonary hypertension" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Connolly" 1 => "B.E. Garfield" 2 => "A. Crosby" 3 => "N.W. Morrell" 4 => "S.J. Wort" 5 => "P.R. Kemp" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/2211-5463.12369" "Revista" => array:5 [ "tituloSerie" => "FEBS Open Bio" "fecha" => "2018" "volumen" => "8" "paginaInicial" => "339" "paginaFinal" => "348" ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0475" "etiqueta" => "45" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MiR-322-5p alleviates cell injury and impairment of cognitive function in vascular dementia by targeting TSPAN5" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "W. Zheng" 1 => "J. Zhang" 2 => "B. Zhou" 3 => "H. Chang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3349/ymj.2022.63.3.282" "Revista" => array:5 [ "tituloSerie" => "Yonsei Med J" "fecha" => "2022" "volumen" => "63" "paginaInicial" => "282" "paginaFinal" => "291" ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0480" "etiqueta" => "46" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "TBX1 functions as a tumor suppressor in thyroid cancer through inhibiting the activities of the PI3K/AKT and MAPK/ERK pathways" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "N. Wang" 1 => "Y. Li" 2 => "J. Wei" 3 => "J. Pu" 4 => "R. Liu" 5 => "Q. Yang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1089/thy.2018.0312" "Revista" => array:6 [ "tituloSerie" => "Thyroid" "fecha" => "2019" "volumen" => "29" "paginaInicial" => "378" "paginaFinal" => "394" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30543152" "web" => "Medline" ] ] ] ] ] ] ] ] 46 => array:3 [ "identificador" => "bib0485" "etiqueta" => "47" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MicroRNA-497 accelerates apoptosis while inhibiting proliferation, migration, and invasion through negative regulation of the MAPK/ERK signaling pathway via RAF-1" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L. Tao" 1 => "C.Y. Zhang" 2 => "L. Guo" 3 => "X. Li" 4 => "N.N. Han" 5 => "Q. Zhou" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jcp.2018.26272" "Revista" => array:5 [ "tituloSerie" => "J Cell Physiol" "fecha" => "2018" "volumen" => "233" "paginaInicial" => "6578" "paginaFinal" => "6588" ] ] ] ] ] ] 47 => array:3 [ "identificador" => "bib0490" "etiqueta" => "48" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mitochondrial dynamics: overview of molecular mechanisms" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "L. Tilokani" 1 => "S. Nagashima" 2 => "V. Paupe" 3 => "J. Prudent" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1042/ebc20170104" "Revista" => array:6 [ "tituloSerie" => "Essays Biochem" "fecha" => "2018" "volumen" => "62" "paginaInicial" => "341" "paginaFinal" => "360" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30030364" "web" => "Medline" ] ] ] ] ] ] ] ] 48 => array:3 [ "identificador" => "bib0495" "etiqueta" => "49" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Recent advances into the understanding of mitochondrial fission" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "K. Elgass" 1 => "J. Pakay" 2 => "M.T. Ryan" 3 => "C.S. Palmer" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.bbamcr.2012.05.002" "Revista" => array:6 [ "tituloSerie" => "Biochim Biophys Acta" "fecha" => "2013" "volumen" => "1833" "paginaInicial" => "150" "paginaFinal" => "161" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22580041" "web" => "Medline" ] ] ] ] ] ] ] ] 49 => array:3 [ "identificador" => "bib0500" "etiqueta" => "50" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mitochondrial fission in human diseases" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M.N. Serasinghe" 1 => "J.E. Chipuk" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/164_2016_38" "Revista" => array:5 [ "tituloSerie" => "Handbook Exp Pharmacol" "fecha" => "2017" "volumen" => "240" "paginaInicial" => "159" "paginaFinal" => "188" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack714455" "titulo" => "Acknowledgement" "texto" => "<p id="par0230" class="elsevierStylePara elsevierViewall">Thanks for all members.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/02116995/00000043000000S1/v1_202312180955/S0211699523000103/v1_202312180955/en/main.assets" "Apartado" => array:4 [ "identificador" => "42448" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Originales" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/02116995/00000043000000S1/v1_202312180955/S0211699523000103/v1_202312180955/en/main.pdf?idApp=UINPBA000064&text.app=https://revistanefrologia.com/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0211699523000103?idApp=UINPBA000064" ]
año/Mes | Html | Total | |
---|---|---|---|
2024 Noviembre | 3 | 1 | 4 |
2024 Octubre | 68 | 54 | 122 |
2024 Septiembre | 71 | 47 | 118 |
2024 Agosto | 74 | 76 | 150 |
2024 Julio | 53 | 35 | 88 |
2024 Junio | 71 | 47 | 118 |
2024 Mayo | 88 | 49 | 137 |
2024 Abril | 92 | 35 | 127 |
2024 Marzo | 89 | 27 | 116 |
2024 Febrero | 94 | 40 | 134 |
2024 Enero | 73 | 26 | 99 |
2023 Diciembre | 77 | 22 | 99 |
2023 Noviembre | 71 | 45 | 116 |
2023 Octubre | 63 | 57 | 120 |
2023 Septiembre | 99 | 37 | 136 |
2023 Agosto | 56 | 36 | 92 |
2023 Julio | 46 | 28 | 74 |
2023 Junio | 59 | 23 | 82 |
2023 Mayo | 47 | 57 | 104 |
2023 Abril | 32 | 9 | 41 |
2023 Marzo | 26 | 36 | 62 |
2023 Febrero | 3 | 10 | 13 |