Journal Information
Vol. 31. Issue. 1.January 2011
Pages 1-128
Vol. 31. Issue. 1.January 2011
Pages 1-128
Full text access
Los dispositivos portátiles miniaturizados el futuro del riñón artificial
The future of the artificial kidney: moving towards wearable and miniaturized devices
Visits
19159
, C.. RONCOb, C.. RONCOb, A.. DAVENPORTc, V.. GURAd
b Department of Nephrology, Dialysis and Transplantation, Ospedale San Bortolo, and International Renal Research Institute of Vicenza (IRRIV)., Vicenza, Italy,
c UCL Center for Nephrology, Royal Free & University College Medical School, London, UK,
d The David Geffen School of Medicine, Cedars Sinai Medical Center,UCLA, Los Angeles, California USA,
This item has received
Article information

Los nuevos enfoques en la investigación en diálisis incluyen el abaratamiento de los tratamientos, las terapias domiciliarias y métodos más sencillos de purificación sanguínea. Probablemente estos objetivos se consigan gracias a los avances en riñones artificiales mediante el uso de nuevas técnicas, como la miniaturización, los microfluidos o la nanotecnología. Esta línea de investigación podría llevarnos a una nueva era en el campo de la diálisis, en la que los nuevos retos serán la transportabilidad, la portabilidad y, por qué no, la posibilidad de desarrollar dispositivos implantables. A pesar de no haber alcanzado aún ese punto, recientemente se han publicado una serie de trabajos en los que los resultados sobre los sistemas de ultrafiltración portátiles y los riñones artificiales portátiles se revelan prometedores y de gran interés. Algunos de ellos recurren a la modalidad extracorpórea como método de purificación sanguínea, mientras que otros recurren a la diálisis peritoneal como modalidad de tratamiento (ViWAK, Vicenza Wearable Artificial Kidney, y AWAK, Automated Wearable Artificial Kidney). Merece mención especial el sistema de ultrafiltración portátil para la terapia de la sobrehidratación y la insuficiencia cardíaca congestiva (WAKMAN). Este sistema permitirá reducir el número de hospitalizaciones, el tratamiento de pacientes con menor comorbilidad y una mayor tolerancia. Durante la investigación en el riñón artificial portátil se han ido sucediendo nuevos avances, como el desarrollo de un sistema completo de hemofiltración para recién nacidos (CARPEDIEM, Cardio Renal Pediatric Dialysis Emergency Machine). El neonato, de hecho, es el paciente que más podría beneficiarse de la miniaturización del circuito de diálisis.

Esta revisión analiza los fundamentos de esta tendencia y los obstáculos que se le presentan a la hora de alcanzar un sistema de diálisis totalmente ambulatorio.

Se presentan los resultados iniciales de estos nuevos dispositivos. Con este trabajo nos gustaría promover un esfuerzo común para dar un salto cuantitativo tecnológico y hacer que el riñón artificial portátil sea una realidad y no una quimera.

New directions in dialysis research include cheaper treatments, home based therapies and simpler methods of blood purification. These objectives may be probably obtained with innovations in the field of artificial kidney through the utilization of new disciplines such as miniaturization, microfluidics, nanotechnology. This research may lead to a new era of dialysis in which the new challenges are transportability, wearability and why not the possibility to develop implantable devices. Although we are not there yet, a new series of papers have recently been published disclosing interesting and promising results on the application of wearable ultrafiltration systems (WUF) and wearable artificial kidneys (WAK). Some of them use extracorporeal blood cleansing as a method of blood purification while others use peritoneal dialysis as a treatment modality (ViWAK and AWAK.) A special mention deserves the wearable/portable ultrafiltration system for the therapy of overhydration and congestive heart failure (WAKMAN). This system will allow dehospitalization and treatment of patients with less comorbidity and improved tolerance. On the way to the wearable artificial kidney, new discoveries have been made such as a complete system for hemofiltration in newborns (CARPEDIEM). The neonate in fact is the typical patient who may benefit from miniaturization of the dialysis circuit.

This review analyzes the rationale for such endeavour and the challenges to overcome in order to make possible a true ambulatory dialysis treatment. Some initial results with these new devices are presented. We would like to stimulate a collaborative effort to make a quantum leap in technology making the wearable artificial kidney a reality rather than a dream. 

Bibliografía
[1]
Lysaght MJ. Maintenance dialysis population dynamics: current trends and long-term implications. J Am Soc Nephrol 2002;13(Suppl 1)S37-40. [Pubmed]
[2]
Lockridge RS Jr. Daily dialysis and long-term outcomes--the Lynchburg Nephrology NHHD experience. Nephrol News Issues 1999;13(12):16,19,23-6.
[3]
Ledebo I, Ronco C. The best dialysis therapy? Results from an internationañ survey among nephrology professionals. NDT Plus 2008;1(6):403-8. Epub 2008 Sep 12.
[4]
Robinson BM, Port FK. International hemodialysis patient outcomes comparisons revisited: the role of practice patterns and other factors. Clin J Am Soc Nephrol 2009;4(Suppl 1):S12-7. [Pubmed]
[5]
Manns BJ, Johnson JA, Taub K, Mortis G, Ghali WA, Donaldson C. Dialysis adequacy and health related quality of life in hemodialysis patients. ASAIO J 2002;48:565-9. [Pubmed]
[6]
Mapes DL, Lopes AA, Satayathum S, McCullough KP, Goodkin DA, Locatelli F, et al. Health-related quality of life as a predictor of mortality and hospitalization: The dialysis Outcomes and Practice Patterns Study (DOPPS). Kidney Int 2003;64:339-49. [Pubmed]
[7]
7. McFarlane PA, Bayoumi AM, Pierratos A, Redelmeier DA. The quality of life and cost utility of home nocturnal and  conventional in-center hemodialysis. Kidney Int 2003;64:1004-11. [Pubmed]
[8]
8. Mohr PE, Neumann PJ, Franco SJ, Marainen J, Lockridge R, Ting G. The case for daily dialysis: Its impact on costs and  quality of life. Am J Kidney Dis 2001;37:777-89. [Pubmed]
[9]
Patel SS, Shah VS, Peterson RA, Kimmel PL. Psychosocial variables, quality of life, and religious beliefs in ESRD patients  treated with hemodialysis. Am J Kidney Dis 2002;40:1013-22. [Pubmed]
[10]
10. Lockridge RS Jr. The direction of end-stage renal disease reimbursement in the United States. Semin Dial 2004;17:125-30. [Pubmed]
[11]
Lockridge RS Jr, McKinney JK. Is HCFA¿s reimbursement policy controlling quality of care for end-stage renal disease  patients? ASAIO J 2001;47:466-8. [Pubmed]
[12]
Ronco C, Davenport A, Gura V. Toward the wearable artificial kidney. Hemodial Int 2008;12(Suppl 1):S40-7. [Pubmed]
[13]
Ronco C, Davenport A, Gura V. A wearable artificial kidney: dream or reality? Nat Clin Pract Nephrol 2008;4(11):604-5. Epub 2008 Sep 9. [Pubmed]
[14]
Pierratos A. Daily hemodialysis: An update. Curr Opin Nephrol Hypertens 2002;11:165-71. [Pubmed]
[15]
Lindsay RM, Heidenheim AP, Leitch R, et al. Short daily versus long nocturnal hemodialysis. ASAIO J 2001;47:449-55. [Pubmed]
[16]
Buoncristiani U, Fagugli R, Quintaliani G, Kulurianu H. Rationale for daily dialysis. Home Hemodial Int 1997;1:12-8.
[17]
Depner T. Why daily hemodialysis is better: Solute kinetics. Semin Dial 1999;12:462-71.
[18]
Pierratos A. Effect of therapy time and frequency on effective solute removal. Semin Dial 2001;14:284-8. [Pubmed]
[19]
Gura V, Beizai M, Ezon C, Polaschegg HD. Continuous renal replacement therapy for end-stage renal disease: The  wearable artificial kidney (WAK). In: Ronco C, Brendolan A, Levin NW (eds.). Cardiovascular Disorders in Hemodialysis. Basel: Karger, Contrib Nephrol 2005;149:325-33.
[20]
Gura V, Beizai M, Ezon C. CRRT for CHF; the wearable continuous ultrafiltration system. ASAIO J 2006;52:59-61. [Pubmed]
[21]
Gura V, Beizai M, Ezon C, Polaschegg HD. Pulsatile blood and dialysate counter phase flows, increased sorbent capacity and a high flux membrane explain the high efficiency of the wearable artificial kidney (WAK). J Am Soc Nephrol 2005;16:38A-39A.
[22]
Gura V, Ronco C, Nalesso F, Brendolan A, Beizai M, Ezon C, et al. A wearable haemofilter: first human  study of slow continuous ambulatory ultrafiltration. Kidney Int 2008;73(4):497-502. Epub 2007 Dec 5. [Pubmed]
[23]
Gura V, Beizai M, Ezon C, Snukal R, Rambod E. The wearable artificial kidney (WAK) removes beta2-microglobulins (B2M). J Am Soc Nephrol 2006;17: 723A-724A.
[24]
Davenport A, Gura V, Ronco C, Beizai M, Ezon C, Rambod E. A wearable haemodialysis device for patients with end-stage renal failure: a pilot study. Lancet 2007;370(9604):2005-10. [Pubmed]
[25]
Shettigar UR, Kablitz C, Stephen R, Kolff WJ. A portable hemodialysis/ hemofiltration system independent of dialysate and infusion fluid. Artif Organs 1983;7:254-6. [Pubmed]
[26]
Shaldon S, Beau MC, Dschodt G, Lysaght MJ, Ramperez P, Mion C. Continuous ambulatory hemofiltration. Trans Am Soc Artif Intern Organs 1980;26:210-2.
[27]
Kolf WJ, Watschinger B, Vertes V. Wearable kidney: Results in patients treated with the coil kidney (disposable dialyzing unit). J Am Med Assoc 1956;161:1433-7. [Pubmed]
[28]
Asaba H, Bergstrom J, Furst P, Shaldon S, Wiklund S. Treatment of diuretic resistant fluid retention with ultrafiltration. Acta Med Scand 1978;204:145-9. [Pubmed]
[29]
Murisasco A, Reynier JP, Ragon A, Boobes Y, Baz M, Durand C, et al. Continuous arteriovenous hemofiltration in a wearable device to treat end stage renal disease. Trans Am Soc Artif Intern Organs 1986;32:567-71.
[30]
Neff MS, Sadjadi S, Slifkin R. A wearable artificial glomerulus. Trans Am Soc Artif Intern Organs 1979;25:71-3. [Pubmed]
[31]
Hillege HL, Girbes ARJ, De Kam PJ, et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation 2000;102:203-10. [Pubmed]
[32]
Davenport A. Ultrafiltration in diuretic-resistant volume overload in nephritic syndrome and patients with ascites due to chronic liver disease. Cardiology 2001;96:190-5. [Pubmed]
[33]
Kramer P, Schrader J, Bohnsack W, Grieben G, Grove HJ, Scheter F. Continuous arteriovenous hemofiltration. Proc Eur Dial Transplant Assoc 1981;18:743-9. [Pubmed]
[34]
Costanzo MR, Guglin ME, Saltzberg MT, Jessup ML, Bart BA, Teerlink JR, et al, UNLOAD Trial Investigators. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol 2007;49:675-83. [Pubmed]
[35]
Davenport A, Mehta S The acute Dialysis Quality Initiative-part VI: access and anticoagulation in CRRT. Adv Ren Replace Ther 2002;9:273-81. [Pubmed]
[36]
Palevsky PM, Baldwin I, Davenport A, Goldstein S, Paganini E. Renal replacement therapy and the kidney: minimizing the impact of renal replacement therapy on recovery of acute renal failure. Curr Opin Crit Care 2005;11:548-54. [Pubmed]
[37]
Davenport A, Will EJ, Davison AM. The effect of the direction of dialysate flow on the efficiency of CAVHD. Blood Purif 1990;8:329-36. [Pubmed]
[38]
Cheung AK, Greene T, Leypoldt JK, Yan G, Allon M, Delmez J, et al, HEMO Study Group. Association between serum 2-microglobulin level and infectious mortality in hemodialysis patients. Clin J Am Soc Nephrol 2008;3:69-77. [Pubmed]
[39]
Ronco C, Fecondini L. The Vicenza wearable artificial kidney for peritoneal dialysis (ViWAK PD). Blood Purif 2007;25(4):383-8. Epub 2007 Sep 3. [Pubmed]
[40]
Ronco C. The wearable artificial kidney: is peritoneal dialysis the solution? Contrib Nephrol 2009;163:300-5. Epub 2009 Jun 3. [Pubmed]
[41]
House AA, Ronco C. Extracorporeal blood purification in sepsis and sepsis-related acute kidney injury. Blood Purif 2008;26(1):30-5. Epub 2008 Jan 10. [Pubmed]
[42]
Cruz D, Bellomo R, Kellum JA, De Cal M, Ronco C. The future of extracorporeal support. Crit Care Med 2008;36(4 Suppl):S243-52. [Pubmed]
Idiomas
Nefrología (English Edition)
Article options
Tools
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?