was read the article
array:20 [ "pii" => "X2013251413003287" "issn" => "20132514" "doi" => "10.3265/Nefrologia.pre2012.Oct.11592" "estado" => "S300" "fechaPublicacion" => "2013-05-01" "documento" => "article" "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Nefrologia (English Version). 2013;33:289-96" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 10524 "formatos" => array:3 [ "EPUB" => 294 "HTML" => 9167 "PDF" => 1063 ] ] "Traduccion" => array:1 [ "es" => array:17 [ "pii" => "X021169951300328X" "issn" => "02116995" "doi" => "10.3265/Nefrologia.pre2012.Oct.11592" "estado" => "S300" "fechaPublicacion" => "2013-05-01" "documento" => "article" "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Nefrologia. 2013;33:289-96" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 101733 "formatos" => array:3 [ "EPUB" => 352 "HTML" => 97899 "PDF" => 3482 ] ] "es" => array:12 [ "idiomaDefecto" => true "titulo" => "La acidosis tubular renal distal: una enfermedad hereditaria en la que no se pueden eliminar los hidrogeniones" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "289" "paginaFinal" => "296" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Distal renal tubular acidosis: a hereditary disease with an inadequate urinary H+ excretion" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig1" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "11592_19904_32813_es_11592_f1.jpg" "Alto" => 665 "Ancho" => 900 "Tamanyo" => 140739 ] ] "descripcion" => array:1 [ "es" => "Modelo de una célula intercalada alfa secretora de ácido" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Laura Escobar, Natalia Mejía, Helena Gil, Fernando Santos" "autores" => array:7 [ 0 => array:2 [ "nombre" => "Laura" "apellidos" => "Escobar" ] 1 => array:2 [ "nombre" => "Laura" "apellidos" => "Escobar" ] 2 => array:2 [ "nombre" => "Natalia" "apellidos" => "Mejía" ] 3 => array:2 [ "nombre" => "Helena" "apellidos" => "Gil" ] 4 => array:2 [ "nombre" => "Helena" "apellidos" => "Gil" ] 5 => array:2 [ "nombre" => "Fernando" "apellidos" => "Santos" ] 6 => array:2 [ "nombre" => "Fernando" "apellidos" => "Santos" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "X2013251413003287" "doi" => "10.3265/Nefrologia.pre2012.Oct.11592" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251413003287?idApp=UINPBA000064" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X021169951300328X?idApp=UINPBA000064" "url" => "/02116995/0000003300000003/v0_201502091323/X021169951300328X/v0_201502091323/es/main.assets" ] ] "itemSiguiente" => array:17 [ "pii" => "X2013251413003279" "issn" => "20132514" "doi" => "10.3265/Nefrologia.pre2013.Jan.11439" "estado" => "S300" "fechaPublicacion" => "2013-05-01" "documento" => "article" "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Nefrologia (English Version). 2013;33:297-300" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 6274 "formatos" => array:3 [ "EPUB" => 307 "HTML" => 5142 "PDF" => 825 ] ] "en" => array:12 [ "idiomaDefecto" => true "titulo" => "Interstitial pneumonitis as an adverse reaction to mTOR inhibitors" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "297" "paginaFinal" => "300" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Neumonitis intersticial como reacción adversa a inhibidores de mTOR" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig1" "etiqueta" => "Tab. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "11439_16025_46549_en_t111439.jpg" "Alto" => 1065 "Ancho" => 2167 "Tamanyo" => 348743 ] ] "descripcion" => array:1 [ "en" => "Main studies on pneumonitis in patients treated with mTOR inhibitors" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Gloria Molas Ferrer, Gloria Molas-Ferrer, Dolors Soy Muner, Dolors Soy-Muner, Helena Anglada Martínez, Helena Anglada-Martínez, Gisela Riu Viladoms, Gisela Riu-Viladoms, Anna Estefanell Tejero, Anna Estefanell-Tejero, Josep Ribas Sala, Josep Ribas-Sala" "autores" => array:12 [ 0 => array:2 [ "nombre" => "Gloria" "apellidos" => "Molas Ferrer" ] 1 => array:2 [ "nombre" => "Gloria" "apellidos" => "Molas-Ferrer" ] 2 => array:2 [ "nombre" => "Dolors" "apellidos" => "Soy Muner" ] 3 => array:2 [ "nombre" => "Dolors" "apellidos" => "Soy-Muner" ] 4 => array:2 [ "nombre" => "Helena" "apellidos" => "Anglada Martínez" ] 5 => array:2 [ "nombre" => "Helena" "apellidos" => "Anglada-Martínez" ] 6 => array:2 [ "nombre" => "Gisela" "apellidos" => "Riu Viladoms" ] 7 => array:2 [ "nombre" => "Gisela" "apellidos" => "Riu-Viladoms" ] 8 => array:2 [ "nombre" => "Anna" "apellidos" => "Estefanell Tejero" ] 9 => array:2 [ "nombre" => "Anna" "apellidos" => "Estefanell-Tejero" ] 10 => array:2 [ "nombre" => "Josep" "apellidos" => "Ribas Sala" ] 11 => array:2 [ "nombre" => "Josep" "apellidos" => "Ribas-Sala" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "X0211699513003271" "doi" => "10.3265/Nefrologia.pre2013.Jan.11439" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699513003271?idApp=UINPBA000064" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251413003279?idApp=UINPBA000064" "url" => "/20132514/0000003300000003/v0_201502091549/X2013251413003279/v0_201502091549/en/main.assets" ] "en" => array:15 [ "idiomaDefecto" => true "titulo" => "Distal renal tubular acidosis: a hereditary disease with an inadequate urinary H+ excretion" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "289" "paginaFinal" => "296" ] ] "autores" => array:1 [ 0 => array:3 [ "autoresLista" => "Laura Escobar, Natalia Mejía, Helena Gil, Fernando Santos" "autores" => array:7 [ 0 => array:4 [ "nombre" => "Laura" "apellidos" => "Escobar" "email" => array:1 [ 0 => "dra.laurae@gmail.com" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "affa" ] ] ] 1 => array:4 [ "nombre" => "Laura" "apellidos" => "Escobar" "email" => array:1 [ 0 => "atr.funatim@gmail.com" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "affa" ] ] ] 2 => array:3 [ "nombre" => "Natalia" "apellidos" => "Mejía" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "affb" ] ] ] 3 => array:3 [ "nombre" => "Helena" "apellidos" => "Gil" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "affc" ] ] ] 4 => array:3 [ "nombre" => "Helena" "apellidos" => "Gil" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "affb" ] ] ] 5 => array:3 [ "nombre" => "Fernando" "apellidos" => "Santos" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "affc" ] ] ] 6 => array:3 [ "nombre" => "Fernando" "apellidos" => "Santos" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "affb" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Departamento de Fisiología, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, DF, México, " "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "affa" ] 1 => array:3 [ "entidad" => "Departamento de Pediatría, Universidad de Oviedo, Oviedo, España, " "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "affb" ] 2 => array:3 [ "entidad" => "Departamento de Pediatría, Universidad de Oviedo, Oviedo, Asturias, Spain, " "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "affc" ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "La acidosis tubular renal distal: una enfermedad hereditaria en la que no se pueden eliminar los hidrogeniones" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig1" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "11592_16025_44702_en_f211592i.jpg" "Alto" => 532 "Ancho" => 1018 "Tamanyo" => 147905 ] ] "descripcion" => array:1 [ "en" => "Topology of the erythrocyte AE1 Cl-/HCO3- exchanger" ] ] ] "textoCompleto" => "<p class="elsevierStylePara">In daily clinical practice, the diagnosis of a disease is usually based on the study of its clinical, biochemical, radiological and anatomical pathology manifestations. However, we depend on the development of basic research to identify and understand the cellular and molecular mechanisms involved in the aetiology of a disease.</p><p class="elsevierStylePara">Despite progress in the understanding of many diseases, the pathogenesis of many others has remained unknown. In many cases, although there are specific factors associated with the disease, we can not tell whether these are related to it by chance or whether they are actually a consequence of it.</p><p class="elsevierStylePara">Currently, genetic studies may reveal the genes involved in a disease whose origin is unknown. The importance of this strategy is that no hypothesis is necessary with regard to the pathogenesis of the disease, except the hypothesis that genetic variation contributes to the disease and that genes, which are related to the disease by chance, can be identified easily. During the past 20 years, the enormous power of this concept has been demonstrated with the identification of more than 2000 disease-related genes, which has revolutionised our perspective regarding their origin.</p><p class="elsevierStylePara">There are various genetic diseases in at least 10% of patients with renal failure<span class="elsevierStyleSup">1</span> and genetic factors that influence the progression of chronic damage in kidney diseases contracted.<span class="elsevierStyleSup">2-4</span> Hereditary kidney diseases have variable frequencies; for example, autosomal dominant polycystic kidney disease is the most common, affecting 1 in every 1000 people. By contrast, other hereditary kidney diseases are rare, which means that they only affect less than 5 people per 10 000.<span class="elsevierStyleSup">1</span></p><p class="elsevierStylePara">There is no doubt that hereditary kidney disease deteriorates the quality of life of patients. Unfortunately, our knowledge of most of these diseases is limited due to low incidence, phenotypic variability, lack of standardised diagnostic procedures and fragmentation of biological and clinical information obtained from studies with small groups. Moreover, the low prevalence of these diseases is not attracting the interest of the pharmaceutical industry and funding for research is scarce. However, the study of ‘rare’ diseases is a unique opportunity to shed light on their origin and understand the molecular scaffold complex that explains the functioning of an organ and the factors that causes deterioration.</p><p class="elsevierStylePara">The rapid development of exome and genome sequencing technologies opens new perspectives for the diagnosis of more than 17 000 Mendelian or monogenic diseases. Moreover, a functional study of the mutant proteins in animal models and cell models reveals the aetiology of the disease and constitutes the reference framework for drug design and/or prevention of the toxic effects of some drugs.<span class="elsevierStyleSup">5, 6</span></p><p class="elsevierStylePara"><span class="elsevierStyleBold"> </span></p><p class="elsevierStylePara"><span class="elsevierStyleBold">METABOLIC ACIDOSIS</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">Metabolic acidosis is characterised by a decrease in blood pH with a drop in bicarbonate concentration in plasma. In individuals with normal respiratory response, metabolic acidosis causes compensatory hyperventilation which mitigates the fall in blood pH. Consequently, blood pH homeostasis is maintained as a result of the concentration quotient bicarbonate/CO<span class="elsevierStyleInf">2</span>, which is the cell and blood buffer par excellence.</p><p class="elsevierStylePara">The extracellular pH must be maintained within a very narrow range of 7.38 to 7.42. pH homeostasis is critical for cell function and, therefore, of our organs. A more acidic blood pH than normal may be the result of: an accumulation of acids (lactic acidosis, ketoacidosis, renal failure), loss of bicarbonate via the gastrointestinal tract (as in the case of chronic diarrhoea or malabsorption<span class="elsevierStyleSup">7</span>) and bicarbonate loss due to a defect in its renal reabsorption or due to its consumption as a result of a defect in the urinary excretion of hydrogen ions by the kidney (hyperchloraemic acidosis or distal renal tubular acidosis, dRTA).<span class="elsevierStyleSup">8-13</span></p><p class="elsevierStylePara">The catabolism of food ingested and that of the metabolites of our own cells produces two types of acids: volatile (CO<span class="elsevierStyleInf">2</span>) and non-volatile (sulphuric, phosphoric and ammonium). Protein intake produces an acid load that results in H<span class="elsevierStyleSup">+</span> ions: from 1mEq/kg/day in adults and double this amount in children.<span class="elsevierStyleSup">12,14</span> The circulating nucleic acids consume the bicarbonate present in the plasma; however, the kidney can compensate this loss, since it produces and reabsorbs the bicarbonate.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"><span class="elsevierStyleBold">ACID-BASE BALANCE IN THE KIDNEY</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">The kidney maintains and controls the acid-base balance of  blood through three mechanisms: filtration and reabsorption of bicarbonate, acid (or alkali) excretion and synthesis of ammonium and bicarbonate. In the kidney, two connected biochemical processes take place: bicarbonate reabsorption and the synthesis, secretion, recycling and urinary excretion of ammonium.</p><p class="elsevierStylePara">The presence of multiple transport systems in the different segments of the nephron tubules makes it possible to recover all the bicarbonate (HCO<span class="elsevierStyleInf">3</span>-) filtered (4320mmol/day) in the glomerulus.<span class="elsevierStyleSup">14</span> In the first tubular segments of the nephron, the proximal tubules reabsorb approximately 80% of bicarbonate. In this tubular segment, bicarbonate reabsorption occurs through the Na<span class="elsevierStyleSup">+</span>/HCO<span class="elsevierStyleInf">3</span>-(NBCe1) cotransporter; this absorption is connected the secretion of acid in urine by the Na<span class="elsevierStyleSup">+</span>/H<span class="elsevierStyleSup">+</span> (NHE3) exchanger.<span class="elsevierStyleSup">15</span> In the proximal tubules, circulating glutamine is reabsorbed from which ammonium and bicarbonate are simultaneously synthesised.</p><p class="elsevierStylePara">The reabsorption of 15% of the bicarbonate occurs in the thick ascending loop of Henle and only about 5% of the bicarbonate is recovered in the distal tubules of the nephron.<span class="elsevierStyleSup">16,17</span> Lastly, kidney performs the excretion of the acid load in the urine: diacid phosphate H<span class="elsevierStyleInf">2</span>PO<span class="elsevierStyleInf">4</span><span class="elsevierStyleSup">-</span> (titratable acid) and ammonium sulphate. </p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"><span class="elsevierStyleBold">THE IMPORTANCE OF URINARY ACIDIFICATION</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">Urinary acidification, together with citrate excretion, is essential in the removal of organic and inorganic salts in soluble form. The urinary buffers are phosphates, but ammonium/ammonia acts as a buffer to a greater extent.</p><p class="elsevierStylePara">The intake of an acid load such as in a high-protein meal, causes the kidneys to produce a more acidic urine (pH<5.5); it also decreases the rate of bicarbonate excretion and increases phosphate and ammonium excretion.<span class="elsevierStyleSup">18-21</span></p><p class="elsevierStylePara"><span class="elsevierStyleBold"> </span></p><p class="elsevierStylePara"><span class="elsevierStyleBold">TRANSPORT MECHANISMS WHICH PARTICIPATE IN ACID-BASE HOMEOSTASIS IN ALPHA INTERCALATED CELLS</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">The secretion of H<span class="elsevierStyleSup">+</span> hydrogen ions in urine is carried out in the alpha-intercalated cells of cortical and medullary collecting ducts (Figure 1). H<span class="elsevierStyleSup">+</span> ATPase, V-ATPase, catalyses the passage of H<span class="elsevierStyleSup">+</span> from the cytoplasm to the tubular lumen. Anhydrase carbonic CA2 produces H<span class="elsevierStyleSup">+</span> hydrogen ions and simultaneously, bicarbonate is reabsorbed through the Cl<span class="elsevierStyleSup">-</span>/HCO<span class="elsevierStyleInf">3</span><span class="elsevierStyleSup">-</span> exchanger, corresponding to the AE1 isoform. The ammonium excretion mechanism takes place in two stages: firstly, there is uptake from the interstitium to the cytoplasm via HCN2 voltage-activated ammonium channels<span class="elsevierStyleSup">21</span> and Rhcg ammonia channels.<span class="elsevierStyleSup"> 20</span> HCN2 channels are constitutive, they may uptake ammonium and/or sodium and are not regulated by metabolic acidosis.<span class="elsevierStyleSup">21</span> By contrast, Rhcg ammonia channels are located both in apical membranes and in basolateral membranes,<span class="elsevierStyleSup">22</span> and their destination to the membranes is regulated by metabolic acidosis.<span class="elsevierStyleSup">20</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"><span class="elsevierStyleBold">AE1 Cl<span class="elsevierStyleSup">-</span>/HCO<span class="elsevierStyleInf">3</span><span class="elsevierStyleSup">-</span> EXCHANGER </span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">The <span class="elsevierStyleItalic">SLC4A1</span> gene encodes the AE1 exchanger, a dimeric glycoprotein with 12-14 transmembrane domains<span class="elsevierStyleSup">23-25</span> (Figure 2). There are three genes in the AE1 family and in the tissues in which AE1 is expressed, AEI it participates in the regulation of pH, cell volume and the transcellular transport of acid and base in epithelial cells.<span class="elsevierStyleSup">26-28</span></p><p class="elsevierStylePara">AE1 presents a specific isoform of erythrocytes and a specific short isoform of the kidney.<span class="elsevierStyleSup">29</span> In erythrocytes, AE1, in addition to exchanging chloride for the bicarbonate of the plasma, has a structural role in interacting with cytoskeletal proteins that contribute to AE1 traffic and its stability in the plasma membrane.<span class="elsevierStyleSup">23</span> As such, AE1 plays a central role in respiration by transporting and removing CO<span class="elsevierStyleInf">2</span> via the lungs and in acid-base homeostasis in the kidney.<span class="elsevierStyleSup">30</span> In the kidney, AE1 performs bicarbonate reabsorption into the interstitial space and blood vessels.<span class="elsevierStyleSup">31</span> There is a group of mutations in AE1 that cause deformations in the erythrocyte and whose inheritance is autosomal dominant: inherited spherocytic anaemia, Southeast Asian ovalocytosis and other stomatocytosis with normal kidney function.<span class="elsevierStyleSup">32</span> There are other series of AE1 mutations that generate dRTA associated with erythrocyte problems.<span class="elsevierStyleSup">10,33,34</span> AE1 mutations can be consulted at: www.ensembl.org and www.hgmd.org</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"><span class="elsevierStyleBold"> </span></p><p class="elsevierStylePara"><span class="elsevierStyleBold">V-ATPase</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">Vacuolar H- ATPase (V-ATPase) belongs to an H<span class="elsevierStyleSup">+</span> hydrogen-ion pump family and is located in a variety of membranes: endosomes, lysosomes, secretory vesicles and in the plasma membranes of eukaryotes.<span class="elsevierStyleSup">35-37</span> V-ATPase is a multimeric enzyme complex that consists of 14 subunits (Figure 3); it has two domains: one in the cytoplasm (V<span class="elsevierStyleInf">1</span>) and the other in the membrane (V<span class="elsevierStyleInf">0</span>). V<span class="elsevierStyleInf">1</span> is the catalytic domain and it has 8 subunits (A-H). Domain V<span class="elsevierStyleInf">0</span> comprises 6 subunits (a, c, c”, d, e, and Ac45 in mammals) and translocates H<span class="elsevierStyleSup">+</span> through the membrane.<span class="elsevierStyleSup">35-37</span> There are three copies of subunits A and B that alternate in a ring-shaped arrangement (Figure 3). The catalytic sites are in subunit A1 and the interface between subunits A-B regulates the activity of the enzyme.<span class="elsevierStyleSup">38-39</span> Subunit 'a' in V<span class="elsevierStyleInf">0</span> allows access to hemichannels through which H<span class="elsevierStyleSup">+</span> hydrogen ions are exported to the luminal space.<span class="elsevierStyleSup">37</span> There are four isoforms of subunit 'a' (a1-a4) and they have a 47-61% identity in humans.<span class="elsevierStyleSup">35</span> Subunit 'a' also participates in traffiking of V-ATPase in mammal cells.<span class="elsevierStyleSup">37</span></p><p class="elsevierStylePara">In alpha-intercalated cells of the collecting duct, V-ATPase is located on the apical membranes and secretes H<span class="elsevierStyleSup">+</span> in urine (Figure 1).<span class="elsevierStyleSup">35</span> Subunits B1 and a4 of V-ATPase are specific alpha-intercalated cells of the collecting duct. Defects in these subunits lead to “distal renal tubular acidosis” or dRTA.<span class="elsevierStyleSup">9,40</span> As the B1 subunit is also expressed in the ciliary cells of the inner ear,<span class="elsevierStyleSup">9 </span>mutations in subunit B1 produce dRTA with deafness.</p><p class="elsevierStylePara">The gene <span class="elsevierStyleItalic">ATP6V1B1 </span>encodes B1 subunit and comprises 14 exons, which produce a protein consisting of 513 amino acids. The gene <span class="elsevierStyleItalic">ATP6V0A4</span> has 24 exons of which 20 encode the 840 amino acids of a4 subunit.<span class="elsevierStyleSup">35</span></p><p class="elsevierStylePara">There are other transport systems in alpha-intercalated cells of the distal nephron which are also involved in acid-base homeostasis, such as carbonic anhydrase II,<span class="elsevierStyleSup">41</span> the KCC4 potassium/chloride cotransporter<span class="elsevierStyleSup">42, 43</span>, Rhcg<span class="elsevierStyleSup">20,44</span> and the HCN2 ammonium channel (Figure 1).<span class="elsevierStyleSup">21</span> H-K-ATPase present in the apical membrane of alpha-intercalated cells does not seem to participate in secretion, but rather in reabsorption of K<span class="elsevierStyleSup">+ </span>in hypokalemia.<span class="elsevierStyleSup">40.45</span></p><p class="elsevierStylePara">Figure 1 illustrates  transporters, ion channels and V-ATPase in alpha-intercalated cells of the collecting duct. It is important to highlight that, traduction, and destination to the membrane of many transporters and ion channels depend on metabolic conditions.</p><p class="elsevierStylePara">Collecting duct microperfusion trials and knockout mouse models have helped to elucidate transport pathways involved in acid-base homeostasis in alpha-intercalated cells. For example, the mouse not expressing KCC4 develops sensorineural deafness, as well as dRTA.<span class="elsevierStyleSup">42</span> There is another Cl/bicarbonate exchanger which also operates as a Cl<span class="elsevierStyleSup">-</span> channel, Slc26a7, activated by hypertonicity.<span class="elsevierStyleSup">46</span> Mouse Slc26a7 -/- develops dRTA.<span class="elsevierStyleSup">47</span> It is noteworthy that mice that do not express the ammonia channel (Rhcg -/-) have problems in excreting only in metabolic acidosis, suchas in  incomplete dRTA.<span class="elsevierStyleSup">44</span> The ammonium channel HCN2 is a constitutive ion channel involved in baseline ammonium excretion but it does not appear to be regulated by metabolic acidosis. <span class="elsevierStyleSup">21</span></p><p class="elsevierStylePara"><span class="elsevierStyleBold"> </span></p><p class="elsevierStylePara"><span class="elsevierStyleBold">DISTAL RENAL TUBULAR ACIDOSIS</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">dRTA belongs to the group of renal diseases with a very low incidence in any population.</p><p class="elsevierStylePara">In dRTA, the ability to acidify urine is lost due to a defect in the excretion of acid load (H<span class="elsevierStyleSup">+</span> and ammonium ions) in alpha-intercalated cells of the collecting duct. The acid load accumulation in the distal nephron results in consumption and reduction of the bicarbonate/CO<span class="elsevierStyleInf">2</span> buffer in blood. The symptoms accompanying dRTA include stunted growth, vomiting, diarrhoea and/or constipation, loss of appetite, polydipsia and polyuria, nephrocalcinosis and it may also present weakness and muscle paralysis due to loss of potassium (hypokalemia).</p><p class="elsevierStylePara">To diagnose dRTA in the clinic, it is necessary to determine plasma creatinine and fractional sodium, potassium and chloride excretion, calciuria and citraturia. Acidosis is generally observed in blood (pH<7.35) as well as a marked decrease in the concentration of bicarbonate and CO<span class="elsevierStyleInf">2</span> (<15mEq/l). In dRTA, urine pH is higher than 6 in the presence of systemic metabolic acidosis.</p><p class="elsevierStylePara">For cases in which diagnosis is uncertain, as in incomplete dRTA, it is advisable to perform acidification tests. These tests involve the administration of NH<span class="elsevierStyleInf">4</span>Cl to determine pH, titratable acidity and urinary ammonium excretion.<span class="elsevierStyleSup">48</span> Due to complications of this test in children, acidification capacity can be evaluated by determining the maximum urinary pCO<span class="elsevierStyleInf">2</span> (UpCO<span class="elsevierStyleInf">2</span>) with the intake of sodium bicarbonate (4mEq/kg).<span class="elsevierStyleSup">49</span> The pCO<span class="elsevierStyleInf">2</span> urinary test can be performed with sodium bicarbonate or acetazolamide stimuli or both, in this case administered at half the usual dose. Another test is furosemide with fludrocortisone.<span class="elsevierStyleSup">49-52</span></p><p class="elsevierStylePara">Diagnostic tests confirm the inability to excrete acid loads by observing a urinary pH higher than 5.5.</p><p class="elsevierStylePara">Ultrasound studies in patients with dRTA show the presence of calcium deposits in the renal tissue (nephrocalcinosis) and/or urinary tract stones (nephrolithiasis).</p><p class="elsevierStylePara">Chronic acidosis and intercurrent secondary problems (vomiting, polyuria, dehydration, rejection of dose, etc..) affect growth and, consequently, there is a decrease in the size and weight of the patients.</p><p class="elsevierStylePara"> dRTA is accompanied by hyperchloraemia as a result of decreased HCO<span class="elsevierStyleInf">3</span><span class="elsevierStyleSup">-</span> in blood. In dRTA, hypokalemia is observed ([K]<3.5mEq/l), along with hypercalciuria and hypocitraturia. Hypercalciuria occurs when there is urinary calcium excretion greater than 4mg/kg/day in both adults and in children. It is necessary to consider that the urinary calcium/creatinine quotient in infants varies with age. Normal values according to age are: 0-6 months <0.8 mg/mg, 6 to 12 months <0.6 mg/mg, 1 to 2 years <0.5 mg/mg.<span class="elsevierStyleSup">53</span> In adults, hypocitraturia is considered a value below 300 mg/day for both sexes, and/or a citrate/creatinine rate value below 250 mg/g. In children hypocitraturia is considered a value below 8 mg/kg/day and/or a citrate/creatinine quotient below 400 mg/g.<span class="elsevierStyleSup">53</span></p><p class="elsevierStylePara">It is important to highlight that calcium excretion in urine is high in infants and decreases progressively with age. As such, hypocitraturia is most relevant in the development of nephrocalcinosis and urolithiasis, in which primarily calcium phosphate salts are deposited. It is also noteworthy that dRTA cases have been found without no hipercalciuria.<span class="elsevierStyleSup">54</span></p><p class="elsevierStylePara"><br></br>Patients with dRTA display a positive urine anion gap and a normal plasma anion gap ([Na+] + [K+] - [Cl]), distinguishing it from other types of acidosis, such as ketoacidosis , lactic acidosis and acidosis due to poisoning with solvents or drugs, with a higher plasma anion gap than normal.<span class="elsevierStyleSup">7</span></p><p class="elsevierStylePara"><br></br>Untreated, dRTA causes stunted growth, rickets in children and osteomalacia in adults, and deterioration of renal function over the years.</p><p class="elsevierStylePara"><br></br>Fortunately, dRTA has good prognosis if it is diagnosed at an early age and alkaline treatment is continued, which consists of periodic doses of sodium bicarbonate and/or potassium citrate during the day.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"><span class="elsevierStyleBold">HEREDITARY FORMS OF RENAL TUBULAR ACIDOSIS</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">Mutations in genes produce varying effects: premature stop codons, shift of the open reading frame, alternate RNA processing and changes in the chemical nature of more than one amino acid. Mutations cause structural alterations in proteins which may lead to loss of function.</p><p class="elsevierStylePara">In autosomal dominant dRTA, one parent suffers and is the carrier of the disease. The groups of Michael Tanner of the University of Bristol and Fiona Karet of the Medical Research Institute of Cambridge in the United Kingdom were the first to identify mutations in the <span class="elsevierStyleItalic">SLC4A1</span> gene in families with autosomal dominant dRTA.<span class="elsevierStyleSup">55,56</span> AE1 mutations in autosomal dominant dRTA are always heterozygous. The loss of AE1 function in the erythrocyte causes hereditary spherocytosis and ovalocytosis.<span class="elsevierStyleSup">55</span></p><p class="elsevierStylePara">The AE1 kidney-specific isoform is shorter: it does not have the first 65 amino acids of the NH2-terminus of the AE1 erythrocyte. As such, autosomal dominant dRTA only affects renal function in  patients when AE1 mutations are located in the transmembrane domain and in the carboxyl-terminus (Figure 2).<span class="elsevierStyleSup">23,25,32,57-59</span></p><p class="elsevierStylePara">Autosomal dominant dRTA appears in later childhood or in adulthood.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"><span class="elsevierStyleBold"> </span></p><p class="elsevierStylePara"><span class="elsevierStyleBold">AUTOSOMAL RECESSIVE DISTAL RENAL TUBULAR ACIDOSIS IS HETEROGENEOUS</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">In autosomal recessive dRTA, parents do not suffer from the disease. Symptoms occur during the first months of life. Autosomal recessive dRTA is associated with mutations in any of the following genes: <span class="elsevierStyleItalic">SLC4A1</span><span class="elsevierStyleSup">60</span>, <span class="elsevierStyleItalic">ATP6V0A4</span> and <span class="elsevierStyleItalic">ATP6V1B1.</span><span class="elsevierStyleSup">10,54,61</span></p><p class="elsevierStylePara">Fiona Karet’s group pioneered lineage studies in families with autosomal recessive dRTA.<span class="elsevierStyleSup">9</span> The families that were analysed were of Turkish origin, mostly from consanguineous marriages. The age of children with autosomal recessive dRTA who participated in the study ranged from 1 month to 3 years; all had nephrocalcinosis and hypercalciuria, and more than 50% displayed sensorineural deafness. So far, around 20 mutations of the gene <span class="elsevierStyleItalic">ATP6V1B1</span> have been identified.<span class="elsevierStyleSup">9,54,61,62</span> Most mutations are homozygous and exceptionally, compound heterozygous. These findings also revealed that the H-K-ATPase enzyme, present in the alpha-intercalated cells, can not compensate for the lack of function of V-ATPase.<span class="elsevierStyleSup">9</span></p><p class="elsevierStylePara">There was an interesting case of dizygotic twins with deafness, only one of whom developed autosomal recessive dRTA.<span class="elsevierStyleSup">63</span></p><p class="elsevierStylePara">dRTA in which deafness appears from the second decade of life is associated with mutations in the gene <span class="elsevierStyleItalic">ATP6V0A4</span><span class="elsevierStyleSup">40,61,64</span>. So far, more than 20 mutations in <span class="elsevierStyleItalic">ATP6V0A4</span> are known (www.ensembl.org and <a href="http://www.hgmd.org" class="elsevierStyleCrossRefs">www.hgmd.org</a>).</p><p class="elsevierStylePara">Approximately 20% of cases with dRTA are not associated with mutations in any of these genes: there are dRTA patients with deafness who have no <span class="elsevierStyleItalic">ATP6V1B1</span> gene mutations and others with normal hearing who do not have <span class="elsevierStyleItalic">ATP6V0A4</span> gene mutations. These findings suggest that other transporters or channels (Figure 1) would be mutated. Therefore, recessive dRTA is heterogeneous because it may occur by mutations in more than one gene.</p><p class="elsevierStylePara">Mutations have been identified in genes <span class="elsevierStyleItalic">ATP6V1B1</span> and <span class="elsevierStyleItalic">ATP6V0A4</span> in groups of Arab<span class="elsevierStyleSup">10,61 </span>and Italian<span class="elsevierStyleSup">65</span> origin; and only mutations in <span class="elsevierStyleItalic">ATP6V1B1</span> have been discovered in those of Spanish<span class="elsevierStyleSup">54</span>, Greek<span class="elsevierStyleSup">66</span>, Iranian<span class="elsevierStyleSup">67 </span>and Serbian<span class="elsevierStyleSup">68</span> origin.</p><p class="elsevierStylePara">Mutations in the <span class="elsevierStyleItalic">SLC4A1</span> gene, which encodes the AE1 Cl<span class="elsevierStyleSup">-</span>/HCO<span class="elsevierStyleInf">3</span><span class="elsevierStyleSup">-</span> exchanger, also produce autosomal recessive dRTA. To date, 11 mutations of <span class="elsevierStyleItalic">SLC4A1</span> are known that produce dRTA, in addition to ovalocytosis or spherocytosis<span class="elsevierStyleSup">13</span> (Figure 3). AE1 mutations have been found mostly in the Asian population. dRTA cases in Asia are an example of natural selection, since they are resistant to malaria.</p><p class="elsevierStylePara">In conclusion, genetic studies have contributed to the identification of three genes affected in dRTA. Genetic studies of new molecular markers, such as Slc26a7 and KCC4 transporters or Rhcg and HCN2 channels in patients with dRTA are a challenge in the identification of new molecular targets that help the understanding of the disease and, consequently to the acid-base homeostasis in the kidney.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"><span class="elsevierStyleBold">Conflicts of interest</span></p><p class="elsevierStylePara"><span class="elsevierStyleBold"> </span></p><p class="elsevierStylePara">The authors declare that they have no conflicts of interest related to the contents of this article.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">Laura Escobar receives an allowance and funding from the Dirección General de Asuntos del Personal Académico (DGAPA) de la Universidad Nacional Autónoma de México and the Fundación Carolina.</p><p class="elsevierStylePara"><a href="grande/11592_16025_44702_en_f211592i.jpg" class="elsevierStyleCrossRefs"><img src="11592_16025_44702_en_f211592i.jpg" alt="Topology of the erythrocyte AE1 Cl-/HCO3- exchanger"></img></a></p><p class="elsevierStylePara">Figure 2. Topology of the erythrocyte AE1 Cl-/HCO3- exchanger</p><p class="elsevierStylePara"><a href="grande/11592_16025_44703_en_f311592i.jpg" class="elsevierStyleCrossRefs"><img src="11592_16025_44703_en_f311592i.jpg" alt="Structure and composition of human V-ATPase"></img></a></p><p class="elsevierStylePara">Figure 3. Structure and composition of human V-ATPase</p><p class="elsevierStylePara"><a href="grande/11592_16025_44710_en_f111592i.jpg" class="elsevierStyleCrossRefs"><img src="11592_16025_44710_en_f111592i.jpg" alt="Model of an acid-secreting alpha-intercalated cell"></img></a></p><p class="elsevierStylePara">Figure 1. Model of an acid-secreting alpha-intercalated cell</p>" "pdfFichero" => "P1-E550-S4070-A11592-EN.pdf" "tienePdf" => true "PalabrasClave" => array:2 [ "es" => array:6 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec435981" "palabras" => array:1 [ 0 => "Retraso en el crecimiento" ] ] 1 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec435983" "palabras" => array:1 [ 0 => "Hipopotasemia" ] ] 2 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec435985" "palabras" => array:1 [ 0 => "Poliuria" ] ] 3 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec435987" "palabras" => array:1 [ 0 => "Polidipsia" ] ] 4 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec435989" "palabras" => array:1 [ 0 => "Nefrocalcinosis" ] ] 5 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec435991" "palabras" => array:1 [ 0 => "Acidosis tubular renal distal" ] ] ] "en" => array:6 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec435982" "palabras" => array:1 [ 0 => "Stunted growth" ] ] 1 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec435984" "palabras" => array:1 [ 0 => "Hypokalemia" ] ] 2 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec435986" "palabras" => array:1 [ 0 => "Polyuria" ] ] 3 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec435988" "palabras" => array:1 [ 0 => "Polydipsia" ] ] 4 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec435990" "palabras" => array:1 [ 0 => "Nephrocalcinosis" ] ] 5 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec435992" "palabras" => array:1 [ 0 => "Distal renal tubular acidosis" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "es" => array:1 [ "resumen" => "<p class="elsevierStylePara">La acidosis tubular renal distal (ATRD) o ATR tipo I se caracteriza por una disminución en la excreción urinaria de los hidrogeniones H<span class="elsevierStyleSup"><span class="elsevierStyleSup">+</span></span> y del amonio. En los niños afectados por ATRD hay retraso en el crecimiento, vómito, estreñimiento, falta de apetito, polidipsia y poliuria, nefrocalcinosis, debilidad y hasta parálisis muscular por la hipopotasemia. En este trabajo se resumen los avances en el estudio genético de la ATRD en las poblaciones hasta ahora estudiadas. La ATRD es heterogénea, por lo que también se analizan los transportadores y canales iónicos que se han identificado hasta ahora en las células intercaladas alfa del túbulo colector, y que podrían explicar los casos de ATRD que no se asocian con los genes hasta ahora estudiados. La ATRD puede ser autosómica dominante o autosómica recesiva. La ATRD autosómica recesiva se manifiesta en los primeros meses de vida, cursa con nefrocalcinosis y sordera temprana o tardía. La ATRD autosómica dominante es menos severa y aparece en la adolescencia o en la etapa adulta, y puede o no presentar nefrocalcinosis. En las células intercaladas alfa de los túbulos colectores se lleva a cabo la excreción urinaria de la carga ácida: los ácidos titulables (fosfatos) y el amonio. La ATRD autosómica recesiva se asocia con mutaciones en los genes <span class="elsevierStyleItalic"><span class="elsevierStyleItalic">ATP6V1B1</span></span>, <span class="elsevierStyleItalic"><span class="elsevierStyleItalic">ATP6V0A4</span></span> y <span class="elsevierStyleItalic"><span class="elsevierStyleItalic">SLC4A1</span></span>, los cuales codifican las subunidades a4 y B1 de la V-ATPasa y el intercambiador de bicarbonato/cloruro AE1, respectivamente. En contraste, la ATRD autosómica dominante se relaciona con mutaciones solo en AE1.</p>" ] "en" => array:1 [ "resumen" => "<p class="elsevierStylePara">Distal renal tubular acidosis (dRTA) or RTA type I is characterised by reduced H<span class="elsevierStyleSup">+</span> hydrogen ions and ammonium urinary excretion. In children affected by dRTA there is stunted growth, vomiting, constipation, loss of appetite, polydipsia and polyuria, nephrocalcinosis, weakness and muscle paralysis due to hypokalaemia. This work summarises progress made in dRTA genetic studies in populations studied so far. DRTA is heterogeneous and as such, transporters and ion channels are analysed which have been identified in alpha-intercalated cells of the collecting duct, which could explain cases of dRTA not associated with the hitherto studied genes. DRTA can be autosomal dominant or autosomal recessive. Autosomal recessive dRTA appears in the first months of life and progresses with nephrocalcinosis and early or late hearing loss. Autosomal dominant dRTA is less severe and appears during adolescence or adulthood and may or may not develop nephrocalcinosis. In alpha-intercalated cells of the collecting duct, the acid load is deposited into the urine as titratable acids (phosphates) and ammonium. Autosomal recessive dRTA is associated with mutations in genes <span class="elsevierStyleItalic">ATP6V1B1, ATP6V0A4</span> and <span class="elsevierStyleItalic">SLC4A1</span>, which encode subunits a4 and B1 of V-ATPase and the AE1 bicarbonate/chloride exchanger respectively. By contrast, autosomal dominant dRTA is only related to mutations in AE1.</p>" ] ] "multimedia" => array:3 [ 0 => array:8 [ "identificador" => "fig1" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "11592_16025_44702_en_f211592i.jpg" "Alto" => 532 "Ancho" => 1018 "Tamanyo" => 147905 ] ] "descripcion" => array:1 [ "en" => "Topology of the erythrocyte AE1 Cl-/HCO3- exchanger" ] ] 1 => array:8 [ "identificador" => "fig2" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "11592_16025_44703_en_f311592i.jpg" "Alto" => 1248 "Ancho" => 1001 "Tamanyo" => 160755 ] ] "descripcion" => array:1 [ "en" => "Structure and composition of human V-ATPase" ] ] 2 => array:8 [ "identificador" => "fig3" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "11592_16025_44710_en_f111592i.jpg" "Alto" => 738 "Ancho" => 1009 "Tamanyo" => 125868 ] ] "descripcion" => array:1 [ "en" => "Model of an acid-secreting alpha-intercalated cell" ] ] ] "bibliografia" => array:2 [ "titulo" => "Bibliography" "seccion" => array:1 [ 0 => array:1 [ "bibliografiaReferencia" => array:68 [ 0 => array:3 [ "identificador" => "bib1" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Devuyst O, Antignac C, Bindels RJM, Chauveau D, Emma F, Gansevoort R, et al. The ERA-EDTA Working Group on inherited kidney disorders. Nephrol Dial Transplant 2012;27:67-9. <a href="http://www.ncbi.nlm.nih.gov/pubmed/22287704" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 1 => array:3 [ "identificador" => "bib2" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Chambers JC, Zhao J, Terracciano CMN, Bezzina CR, Zhang W, Kaba R, et al. Genetic variation in SCN10A influences cardiac conduction. Nat Genet 2010;42:149-52. <a href="http://www.ncbi.nlm.nih.gov/pubmed/20062061" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 2 => array:3 [ "identificador" => "bib3" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Köttgen A. Genome-wide association studies in nephrology research. Am J Kidney Dis 2010;56:743-58. <a href="http://www.ncbi.nlm.nih.gov/pubmed/20728256" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 3 => array:3 [ "identificador" => "bib4" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Böger CA, Gorski M, Li M, Hoffmann MM, Huang C, Yang Q, et al. Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD. PLoS Genet 2011;7:e1002292." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 4 => array:3 [ "identificador" => "bib5" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Ong ACM, Devuyst O. Towards the integration of genetic knowledge into clinical practice. Nephron Clin Pract 2011;118:c3-8. <a href="http://www.ncbi.nlm.nih.gov/pubmed/21071969" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 5 => array:3 [ "identificador" => "bib6" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Dunoyer M. Accelerating access to treatments for rare diseases. Nat Rev Drug Discov 2011;10:475-6. <a href="http://www.ncbi.nlm.nih.gov/pubmed/21701499" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 6 => array:3 [ "identificador" => "bib7" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Kraut JA, Madias NE. Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol 2010;6:274-85. <a href="http://www.ncbi.nlm.nih.gov/pubmed/20308999" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 7 => array:3 [ "identificador" => "bib8" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Rodríguez Soriano J. Renal tubular acidosis: the clinical entity. J Am Soc Nephrol 2002;13:2160-70. <a href="http://www.ncbi.nlm.nih.gov/pubmed/12138150" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 8 => array:3 [ "identificador" => "bib9" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, et al. Mutations in the gene encoding B1 subunit of H -ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 1999;21:84-90. <a href="http://www.ncbi.nlm.nih.gov/pubmed/9916796" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 9 => array:3 [ "identificador" => "bib10" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Karet FE. Inherited distal renal tubular acidosis. J Am Soc Nephrol 2002;13:2178-84. <a href="http://www.ncbi.nlm.nih.gov/pubmed/12138152" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 10 => array:3 [ "identificador" => "bib11" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Fry AC, Karet FE. Inherited renal acidoses. Physiology (Bethesda) 2007;22:202-11." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 11 => array:3 [ "identificador" => "bib12" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Chan JCM SF. Renal tubular acidosis in childhood. World J Pediatr 2007;3:92-7." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 12 => array:3 [ "identificador" => "bib13" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Alper SL. Familial renal tubular acidosis. J Nephrol 2010;23 Suppl 1:S57-76." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 13 => array:3 [ "identificador" => "bib14" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Boron WF BEL. Transport of Acids and Bases. In: Boron WF, Boulpaep EL (eds.). Medical Physiology. Estados Unidos: Elsevier; 2003. p. 845-60." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 14 => array:3 [ "identificador" => "bib15" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Hamm LL, Alpern RJ PP. Cellular mechanisms of renal tubular acidification. In: Alpern RJ, Hebert SC (eds.). The Kidney: Physiology and Pathophysiology. Estados Unidos: Elsevier; 2008. p. 1539-85." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 15 => array:3 [ "identificador" => "bib16" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "DuBose TD, Good DW, Hamm LL, Wall SM. Ammonium transport in the kidney: new physiological concepts and their clinical implications. J Am Soc Nephrol 1991;1:1193-203. <a href="http://www.ncbi.nlm.nih.gov/pubmed/1932632" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 16 => array:3 [ "identificador" => "bib17" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Attmane-Elakeb A, Amlal H, Bichara M. Ammonium carriers in medullary thick ascending limb. Am J Physiol Renal Physiol 2001;280:F1-9. <a href="http://www.ncbi.nlm.nih.gov/pubmed/11133509" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 17 => array:3 [ "identificador" => "bib18" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Hamm LL, Simon EE. Roles and mechanisms of urinary buffer excretion. Am J Physiol 1987;253:F595-605. <a href="http://www.ncbi.nlm.nih.gov/pubmed/3310662" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 18 => array:3 [ "identificador" => "bib19" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Wagner CA, Devuyst O, Bourgeois S, Mohebbi N. Regulated acid-base transport in the collecting duct. Pflugers Arch 2009;458:137-56. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19277700" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 19 => array:3 [ "identificador" => "bib20" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Weiner ID, Verlander JW. Role of NH3 and NH4 transporters in renal acid-base transport. Am J Physiol Renal Physiol 2011;300:F11-23. <a href="http://www.ncbi.nlm.nih.gov/pubmed/21048022" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 20 => array:3 [ "identificador" => "bib21" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Carrisoza-Gaytán R, Rangel C, Salvador C, Saldaña-Meyer R, Escalona C, Satlin LM, et al. The hyperpolarization-activated cyclic nucleotide-gated HCN2 channel transports ammonium in the distal nephron. Kidney Int 2011;80:832-40. <a href="http://www.ncbi.nlm.nih.gov/pubmed/21796099" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 21 => array:3 [ "identificador" => "bib22" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Seshadri RM, Klein JD, Smith T, Sands JM, Handlogten ME, Verlander JW, et al. Changes in subcellular distribution of the ammonia transporter, Rhcg, in response to chronic metabolic acidosis. Am J Physiol Renal Physiol 2006;290:F1443-52. <a href="http://www.ncbi.nlm.nih.gov/pubmed/16434569" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 22 => array:3 [ "identificador" => "bib23" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Alper SL. Molecular physiology and genetics of Na -independent SLC4 anion exchangers. J Exp Biol 2009;212:1672-83. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19448077" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 23 => array:3 [ "identificador" => "bib24" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Alper SL. Molecular physiology of SLC4 anion exchangers. Exp Physiol 2006;91(1):153-61. <a href="http://www.ncbi.nlm.nih.gov/pubmed/16239253" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 24 => array:3 [ "identificador" => "bib25" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Bonar PT, Casey JR. Plasma membrane Cl-/HCO3- exchangers. Channels (Austin) 2008;2:337-45." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 25 => array:3 [ "identificador" => "bib26" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Kopito RR. Molecular biology of the anion exchanger gene family. Int Rev Cytol 1990;123:177-99. <a href="http://www.ncbi.nlm.nih.gov/pubmed/2289848" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 26 => array:3 [ "identificador" => "bib27" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Alper SL. The band 3-related anion exchanger (AE) gene family. Annu Rev Physiol 1991;53:549-64. <a href="http://www.ncbi.nlm.nih.gov/pubmed/2042971" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 27 => array:3 [ "identificador" => "bib28" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Tanner MJ. The major integral proteins of the human red cell. Baillieres Clin Haematol 1993;6:333-56. <a href="http://www.ncbi.nlm.nih.gov/pubmed/8043929" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 28 => array:3 [ "identificador" => "bib29" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Pushkin A, Kurtz I. SLC4 base (HCO3 -, CO3 2-) transporters: classification, function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol 2006;290:F580-99. <a href="http://www.ncbi.nlm.nih.gov/pubmed/16461757" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 29 => array:3 [ "identificador" => "bib30" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Kollert-Jöns A, Wagner S, Hübner S, Appelhans H, Drenckhahn D. Anion exchanger 1 in human kidney and oncocytoma differs from erythroid AE1 in its NH2 terminus. Am J Physiol 1993;265:F813-21. <a href="http://www.ncbi.nlm.nih.gov/pubmed/7506871" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 30 => array:3 [ "identificador" => "bib31" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Wagner CA, Kovacikova J, Stehberger PA, Winter C, Benabbas C, Mohebbi N. Renal acid-base transport: old and new players. Nephron Physiol 2006;103:p1-6. <a href="http://www.ncbi.nlm.nih.gov/pubmed/16352913" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 31 => array:3 [ "identificador" => "bib32" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Bruce LJ, Wrong O, Toye AM, Young MT, Ogle G, Ismail Z, et al. Band 3 mutations, renal tubular acidosis and South-East Asian ovalocytosis in Malaysia and Papua New Guinea: loss of up to 95% band 3 transport in red cells. Biochem J 2000;350:41-51." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 32 => array:3 [ "identificador" => "bib33" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Alper SL. Genetic diseases of acid-base transporters. Annu Rev Physiol 2002;64:899-923. <a href="http://www.ncbi.nlm.nih.gov/pubmed/11826292" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 33 => array:3 [ "identificador" => "bib34" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Yusoff NM, Van Rostenberghe H, Shirakawa T, Nishiyama K, Amin N, Darus Z, et al. High prevalence of Southeast Asian ovalocytosis in Malays with distal renal tubular acidosis. J Hum Genet 2003;48:650-3. <a href="http://www.ncbi.nlm.nih.gov/pubmed/14618420" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 34 => array:3 [ "identificador" => "bib35" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP. Renal vacuolar H+-ATPase. Physiol Rev 2004;84:1263-314." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 35 => array:3 [ "identificador" => "bib36" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Kane PM. Close-up and genomic views of the yeast vacuolar H -ATPase. J Bioenerg Biomembr 2005;37:399-403. <a href="http://www.ncbi.nlm.nih.gov/pubmed/16691472" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 36 => array:3 [ "identificador" => "bib37" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 2007;8:917-29. <a href="http://www.ncbi.nlm.nih.gov/pubmed/17912264" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 37 => array:3 [ "identificador" => "bib38" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "MacLeod KJ, Vasilyeva E, Baleja JD, Forgac M. Mutational analysis of the nucleotide binding sites of the yeast vacuolar proton-translocating ATPase. J Biol Chem 1998;273:150-6. <a href="http://www.ncbi.nlm.nih.gov/pubmed/9417059" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 38 => array:3 [ "identificador" => "bib39" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Vasilyeva E, Liu Q, MacLeod KJ, Baleja JD, Forgac M. Cysteine scanning mutagenesis of the noncatalytic nucleotide binding site of the yeast V-ATPase. J Biol Chem 2000;275:255-60. <a href="http://www.ncbi.nlm.nih.gov/pubmed/10617613" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 39 => array:3 [ "identificador" => "bib40" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Smith AN, Skaug J, Choate KA, Nayir A, Bakkaloglu A, Ozen S, et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet 2000;26:71-5. <a href="http://www.ncbi.nlm.nih.gov/pubmed/10973252" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 40 => array:3 [ "identificador" => "bib41" "etiqueta" => "41" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A 1983;80:2752-6. <a href="http://www.ncbi.nlm.nih.gov/pubmed/6405388" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 41 => array:3 [ "identificador" => "bib42" "etiqueta" => "42" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Boettger T, Hübner CA, Maier H, Rust MB, Beck FX, Jentsch TJ. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 2002;416:874-8. <a href="http://www.ncbi.nlm.nih.gov/pubmed/11976689" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 42 => array:3 [ "identificador" => "bib43" "etiqueta" => "43" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Lang F, Vallon V, Knipper M, Wangemann P. Functional significance of channels and transporters expressed in the inner ear and kidney. Am J Physiol Cell Physiol 2007;293:C1187-208. <a href="http://www.ncbi.nlm.nih.gov/pubmed/17670895" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 43 => array:3 [ "identificador" => "bib44" "etiqueta" => "44" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Biver S, Belge H, Bourgeois S, Van Vooren P, Nowik M, Scohy S, et al. A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 2008;456:339-43. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19020613" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 44 => array:3 [ "identificador" => "bib45" "etiqueta" => "45" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Gumz ML, Lynch IJ, Greenlee MM, Cain BD, Wingo CS. The renal H+-K+-ATPases: physiology, regulation, and structure. Am J Physiol Renal Physiol 2010;298:F12-21. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19640897" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 45 => array:3 [ "identificador" => "bib46" "etiqueta" => "46" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Xu J, Worrell RT, Li HC, Barone SL, Petrovic S, Amlal H, et al. Chloride/bicarbonate exchanger SLC26A7 is localized in endosomes in medullary collecting duct cells and is targeted to the basolateral membrane in hypertonicity and potassium depletion. J Am Soc Nephrol 2006;17:956-67. <a href="http://www.ncbi.nlm.nih.gov/pubmed/16524946" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 46 => array:3 [ "identificador" => "bib47" "etiqueta" => "47" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Xu J, Song P, Nakamura S, Miller M, Barone S, Alper SL, et al. Deletion of the chloride transporter slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J Biol Chem 2009;284:29470-9. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19723628" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 47 => array:3 [ "identificador" => "bib48" "etiqueta" => "48" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Wrong O, Davies HE. The excretion of acid in renal disease. Q J Med 1959;28:259-313. <a href="http://www.ncbi.nlm.nih.gov/pubmed/13658353" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 48 => array:3 [ "identificador" => "bib49" "etiqueta" => "49" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "García Nieto V, Monge M, Hernández Hernández L, Callejón A, Yanes MI, García Rodríguez VE. Study of the renal acidification capacity in children diagnosed of idiopathic hypercalciuria. Nefrologia 2003;23:219-24. <a href="http://www.ncbi.nlm.nih.gov/pubmed/12891936" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 49 => array:3 [ "identificador" => "bib50" "etiqueta" => "50" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Batlle DC. Segmental characterization of defects in collecting tubule acidification. Kidney Int 1986;30:546-54. <a href="http://www.ncbi.nlm.nih.gov/pubmed/3784293" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 50 => array:3 [ "identificador" => "bib51" "etiqueta" => "51" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Viljoen A, Norden AGW, Karet FE. Replacing the short ammonium chloride test. Kidney Int 2007;72:1163; author reply 1164. <a href="http://www.ncbi.nlm.nih.gov/pubmed/18046425" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 51 => array:3 [ "identificador" => "bib52" "etiqueta" => "52" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Walsh SB, Shirley DG, Wrong OM, Unwin RJ. Urinary acidification assessed by simultaneous furosemide and fludrocortisone treatment: an alternative to ammonium chloride. Kidney Int 2007;71:1310-6. <a href="http://www.ncbi.nlm.nih.gov/pubmed/17410104" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 52 => array:3 [ "identificador" => "bib53" "etiqueta" => "53" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Garcia-Nieto V, Santos F. Función renal basal. En: Garcia-Nieto V, Rodríguez-Iturbe B, Santos F (eds.). Nefrologia Pediátrica. 2ª ed. Madrid: Aula Médica; 2006. p. 39-49." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 53 => array:3 [ "identificador" => "bib54" "etiqueta" => "54" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Gil H, Santos F, García E, Alvarez MV, Ordóñez FA, Málaga S, et al. Distal RTA with nerve deafness: clinical spectrum and mutational analysis in five children. Pediatr Nephrol\u{A0}2007;22(6):825-8. <a href="http://www.ncbi.nlm.nih.gov/pubmed/17216496" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 54 => array:3 [ "identificador" => "bib55" "etiqueta" => "55" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Bruce LJ, Cope DL, Jones GK, Schofield AE, Burley M, Povey S, et al. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest 1997;100:1693-707. <a href="http://www.ncbi.nlm.nih.gov/pubmed/9312167" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 55 => array:3 [ "identificador" => "bib56" "etiqueta" => "56" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Karet FE, Gainza FJ, Györy AZ, Unwin RJ, Wrong O, Tanner MJ, et al. Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc Natl Acad Sci 1998;95:6337-42. <a href="http://www.ncbi.nlm.nih.gov/pubmed/9600966" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:1 [ "itemHostRev" => array:3 [ "pii" => "S0022395612002075" "estado" => "S300" "issn" => "00223956" ] ] ] ] ] ] ] 56 => array:3 [ "identificador" => "bib57" "etiqueta" => "57" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Inaba M, Yawata A, Koshino I, Sato K, Takeuchi M, Takakuwa Y, et al. Defective anion transport and marked spherocytosis with membrane instability caused by hereditary total deficiency of red cell band 3 in cattle due to a nonsense mutation. J Clin Invest 1996;97:1804-17. <a href="http://www.ncbi.nlm.nih.gov/pubmed/8621763" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:1 [ "itemHostRev" => array:3 [ "pii" => "S1525861013003472" "estado" => "S300" "issn" => "15258610" ] ] ] ] ] ] ] 57 => array:3 [ "identificador" => "bib58" "etiqueta" => "58" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Ribeiro ML, Alloisio N, Almeida H, Gomes C,\u{A0}Texier P,\u{A0}Lemos C,\u{A0}et al. Severe hereditary spherocytosis and distal renal tubular acidosis associated with the total absence of band 3. Blood 2000;96:1602-4. <a href="http://www.ncbi.nlm.nih.gov/pubmed/10942416" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 58 => array:3 [ "identificador" => "bib59" "etiqueta" => "59" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Chu C, Woods N, Sawasdee N, Guizouarn H, Pellissier B, Borgese F, et al. Band 3 Edmonton I, a novel mutant of the anion exchanger 1 causing spherocytosis and distal renal tubular acidosis. Biochem J 2010;426:379-88. <a href="http://www.ncbi.nlm.nih.gov/pubmed/20028337" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 59 => array:3 [ "identificador" => "bib60" "etiqueta" => "60" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Tanphaichitr VS, Sumboonnanonda A, Ideguchi H, Shayakul C, Brugnara C, Takao M, et al. Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A. J Clin Invest 1998;102:2173-9. <a href="http://www.ncbi.nlm.nih.gov/pubmed/9854053" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 60 => array:3 [ "identificador" => "bib61" "etiqueta" => "61" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Vargas-Poussou R, Houillier P, Le Pottier N, Strompf L, Loirat C, Baudouin V, et al. Genetic investigation of autosomal recessive distal renal tubular acidosis: evidence for early sensorineural hearing loss associated with mutations in the ATP6V0A4 gene. J Am Soc Nephrol 2006;17:1437-43. <a href="http://www.ncbi.nlm.nih.gov/pubmed/16611712" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 61 => array:3 [ "identificador" => "bib62" "etiqueta" => "62" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, et al. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 2002;39:796-803. <a href="http://www.ncbi.nlm.nih.gov/pubmed/12414817" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 62 => array:3 [ "identificador" => "bib63" "etiqueta" => "63" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Santos F, Rey C, Málaga S, Rodríguez LM, Orejas G. The syndrome of renal tubular acidosis and nerve deafness. Discordant manifestations in dizygotic twin brothers. Pediatr Nephrol 1991;5:235-7. <a href="http://www.ncbi.nlm.nih.gov/pubmed/2031843" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 63 => array:3 [ "identificador" => "bib64" "etiqueta" => "64" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Karet FE, Finberg KE, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, et al. Localization of a gene for autosomal recessive distal renal tubular acidosis with normal hearing (rdRTA2) to 7q33-34. Am J Hum Genet 1999;65:1656-65. <a href="http://www.ncbi.nlm.nih.gov/pubmed/10577919" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 64 => array:3 [ "identificador" => "bib65" "etiqueta" => "65" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Andreucci E, Bianchi B, Carboni I, Lavoratti G, Mortilla M, Fonda C, et al. Inner ear abnormalities in four patients with dRTA and SNHL: clinical and genetic heterogeneity. Pediatr Nephrol 2009;24:2147-53. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19639346" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 65 => array:3 [ "identificador" => "bib66" "etiqueta" => "66" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Feldman M, Prikis M, Athanasiou Y, Elia A, Pierides A, Deltas CC. Molecular investigation and long-term clinical progress in Greek Cypriot families with recessive distal renal tubular acidosis and sensorineural deafness due to mutations in the ATP6V1B1 gene. Clin Genet 2006;69:135-44. <a href="http://www.ncbi.nlm.nih.gov/pubmed/16433694" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 66 => array:3 [ "identificador" => "bib67" "etiqueta" => "67" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Sharifian M, Esfandiar N, Mazaheri S, Kariminejad A, Mohkam M, Dalirani R, et al. Distal renal tubular acidosis and its relationship with hearing loss in children: preliminary report. Iran J Kidney Dis 2010;4:202-6. <a href="http://www.ncbi.nlm.nih.gov/pubmed/20622307" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:1 [ "itemHostRev" => array:3 [ "pii" => "S1525861012004641" "estado" => "S300" "issn" => "15258610" ] ] ] ] ] ] ] 67 => array:3 [ "identificador" => "bib68" "etiqueta" => "68" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Mohebbi N, Vargas-Poussou R, Hegemann S, Schuknecht B, Kistler A, Wüthrich R, et al. Homozygous and compound heterozygous mutations in the ATP6V1B1 gene in patients with renal tubular acidosis and sensorineural hearing loss. Clin Genet 2013;83:274-8. <a href="http://www.ncbi.nlm.nih.gov/pubmed/22509993" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/20132514/0000003300000003/v0_201502091549/X2013251413003287/v0_201502091549/en/main.assets" "Apartado" => array:4 [ "identificador" => "35445" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Short Reviews" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/20132514/0000003300000003/v0_201502091549/X2013251413003287/v0_201502091549/en/P1-E550-S4070-A11592-EN.pdf?idApp=UINPBA000064&text.app=https://revistanefrologia.com/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251413003287?idApp=UINPBA000064" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 8 | 13 | 21 |
2024 October | 93 | 77 | 170 |
2024 September | 108 | 75 | 183 |
2024 August | 147 | 113 | 260 |
2024 July | 78 | 75 | 153 |
2024 June | 101 | 94 | 195 |
2024 May | 186 | 73 | 259 |
2024 April | 122 | 45 | 167 |
2024 March | 122 | 44 | 166 |
2024 February | 180 | 41 | 221 |
2024 January | 110 | 43 | 153 |
2023 December | 58 | 28 | 86 |
2023 November | 117 | 73 | 190 |
2023 October | 85 | 78 | 163 |
2023 September | 96 | 514 | 610 |
2023 August | 94 | 55 | 149 |
2023 July | 141 | 75 | 216 |
2023 June | 73 | 53 | 126 |
2023 May | 112 | 61 | 173 |
2023 April | 77 | 49 | 126 |
2023 March | 105 | 42 | 147 |
2023 February | 68 | 51 | 119 |
2023 January | 77 | 53 | 130 |
2022 December | 88 | 48 | 136 |
2022 November | 69 | 43 | 112 |
2022 October | 77 | 60 | 137 |
2022 September | 73 | 47 | 120 |
2022 August | 75 | 53 | 128 |
2022 July | 55 | 57 | 112 |
2022 June | 73 | 52 | 125 |
2022 May | 67 | 55 | 122 |
2022 April | 85 | 61 | 146 |
2022 March | 97 | 54 | 151 |
2022 February | 116 | 61 | 177 |
2022 January | 123 | 46 | 169 |
2021 December | 65 | 55 | 120 |
2021 November | 48 | 43 | 91 |
2021 October | 75 | 81 | 156 |
2021 September | 57 | 47 | 104 |
2021 August | 62 | 71 | 133 |
2021 July | 102 | 69 | 171 |
2021 June | 92 | 27 | 119 |
2021 May | 83 | 42 | 125 |
2021 April | 131 | 82 | 213 |
2021 March | 102 | 70 | 172 |
2021 February | 116 | 40 | 156 |
2021 January | 84 | 28 | 112 |
2020 December | 69 | 24 | 93 |
2020 November | 67 | 19 | 86 |
2020 October | 54 | 25 | 79 |
2020 September | 43 | 23 | 66 |
2020 August | 81 | 16 | 97 |
2020 July | 68 | 15 | 83 |
2020 June | 86 | 28 | 114 |
2020 May | 105 | 34 | 139 |
2020 April | 73 | 25 | 98 |
2020 March | 126 | 25 | 151 |
2020 February | 119 | 32 | 151 |
2020 January | 129 | 40 | 169 |
2019 December | 114 | 28 | 142 |
2019 November | 113 | 30 | 143 |
2019 October | 136 | 29 | 165 |
2019 September | 139 | 35 | 174 |
2019 August | 73 | 22 | 95 |
2019 July | 108 | 35 | 143 |
2019 June | 113 | 31 | 144 |
2019 May | 119 | 20 | 139 |
2019 April | 172 | 45 | 217 |
2019 March | 123 | 29 | 152 |
2019 February | 84 | 20 | 104 |
2019 January | 93 | 36 | 129 |
2018 December | 218 | 56 | 274 |
2018 November | 150 | 27 | 177 |
2018 October | 170 | 34 | 204 |
2018 September | 242 | 31 | 273 |
2018 August | 130 | 25 | 155 |
2018 July | 102 | 23 | 125 |
2018 June | 109 | 18 | 127 |
2018 May | 121 | 14 | 135 |
2018 April | 116 | 11 | 127 |
2018 March | 113 | 13 | 126 |
2018 February | 96 | 11 | 107 |
2018 January | 113 | 5 | 118 |
2017 December | 129 | 15 | 144 |
2017 November | 133 | 20 | 153 |
2017 October | 114 | 13 | 127 |
2017 September | 117 | 16 | 133 |
2017 August | 89 | 33 | 122 |
2017 July | 78 | 13 | 91 |
2017 June | 128 | 15 | 143 |
2017 May | 188 | 17 | 205 |
2017 April | 110 | 19 | 129 |
2017 March | 133 | 13 | 146 |
2017 February | 307 | 28 | 335 |
2017 January | 129 | 29 | 158 |
2016 December | 144 | 11 | 155 |
2016 November | 227 | 26 | 253 |
2016 October | 246 | 36 | 282 |
2016 September | 372 | 17 | 389 |
2016 August | 497 | 21 | 518 |
2016 July | 399 | 32 | 431 |
2016 June | 241 | 0 | 241 |
2016 May | 246 | 0 | 246 |
2016 April | 245 | 0 | 245 |
2016 March | 183 | 0 | 183 |
2016 February | 175 | 0 | 175 |
2016 January | 165 | 0 | 165 |
2015 December | 184 | 0 | 184 |
2015 November | 152 | 0 | 152 |
2015 October | 195 | 0 | 195 |
2015 September | 143 | 0 | 143 |
2015 August | 113 | 0 | 113 |
2015 July | 137 | 0 | 137 |
2015 June | 61 | 0 | 61 |
2015 May | 111 | 0 | 111 |
2015 April | 11 | 0 | 11 |