was read the article
array:21 [ "pii" => "X201325141005096X" "issn" => "20132514" "doi" => "10.3265/Nefrologia.pre2010.Jul.10312" "estado" => "S300" "fechaPublicacion" => "2010-11-01" "documento" => "article" "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Nefrologia (English Version). 2010;30:633-8" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 4468 "formatos" => array:3 [ "EPUB" => 315 "HTML" => 3600 "PDF" => 553 ] ] "Traduccion" => array:1 [ "es" => array:17 [ "pii" => "X0211699510050962" "issn" => "02116995" "doi" => "10.3265/Nefrologia.pre2010.Jul.10312" "estado" => "S300" "fechaPublicacion" => "2010-11-01" "documento" => "article" "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Nefrologia. 2010;30:633-8" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 4933 "formatos" => array:3 [ "EPUB" => 336 "HTML" => 3897 "PDF" => 700 ] ] "es" => array:10 [ "idiomaDefecto" => true "titulo" => "La inmunoexpresión renal de la grelina se atenúa en las glomerulopatías proliferativas humanas" "tienePdf" => "es" "tieneTextoCompleto" => 0 "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "633" "paginaFinal" => "638" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Renal immunoexpression of ghrelin is attenuated in human proliferative glomerulopathies" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "M. Danilewicz, Marian Danilewicz, M. Wagrowska-Danilewicz, Malgorzata Wagrowska-Danilewicz" "autores" => array:5 [ 0 => null 1 => array:2 [ "Iniciales" => "M." "apellidos" => "Danilewicz" ] 2 => array:2 [ "nombre" => "Marian" "apellidos" => "Danilewicz" ] 3 => array:2 [ "Iniciales" => "M." "apellidos" => "Wagrowska-Danilewicz" ] 4 => array:2 [ "nombre" => "Malgorzata" "apellidos" => "Wagrowska-Danilewicz" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "X201325141005096X" "doi" => "10.3265/Nefrologia.pre2010.Jul.10312" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X201325141005096X?idApp=UINPBA000064" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699510050962?idApp=UINPBA000064" "url" => "/02116995/0000003000000006/v0_201502091423/X0211699510050962/v0_201502091423/es/main.assets" ] ] "itemSiguiente" => array:17 [ "pii" => "X2013251410050951" "issn" => "20132514" "doi" => "10.3265/Nefrologia.pre2010.Jul.10543" "estado" => "S300" "fechaPublicacion" => "2010-11-01" "documento" => "article" "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Nefrologia (English Version). 2010;30:639-45" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 4787 "formatos" => array:3 [ "EPUB" => 301 "HTML" => 3695 "PDF" => 791 ] ] "en" => array:10 [ "idiomaDefecto" => true "titulo" => "Pentosan polysulfate sodium prevents kidney morphological changes and albuminuria in rats with Type 1 diabetes" "tienePdf" => "en" "tieneTextoCompleto" => 0 "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "639" "paginaFinal" => "645" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "El pentosán polisulfato de sodio previene las alteraciones morfológicas renales y la albuminuria en ratas con diabetes tipo 1" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Yaira Mathison Natera, Y. Mathison Natera, Hector José Finol, H.J. Finol, Zaida Quero, Z. Quero, Roschman González, R. González, Julio González, J. González" "autores" => array:11 [ 0 => null 1 => array:2 [ "nombre" => "Yaira" "apellidos" => "Mathison Natera" ] 2 => array:2 [ "Iniciales" => "Y." "apellidos" => "Mathison Natera" ] 3 => array:2 [ "nombre" => "Hector José" "apellidos" => "Finol" ] 4 => array:2 [ "Iniciales" => "H.J." "apellidos" => "Finol" ] 5 => array:2 [ "nombre" => "Zaida" "apellidos" => "Quero" ] 6 => array:2 [ "Iniciales" => "Z." "apellidos" => "Quero" ] 7 => array:2 [ "nombre" => "Roschman" "apellidos" => "González" ] 8 => array:2 [ "Iniciales" => "R." "apellidos" => "González" ] 9 => array:2 [ "nombre" => "Julio" "apellidos" => "González" ] 10 => array:2 [ "Iniciales" => "J." "apellidos" => "González" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "X0211699510050954" "doi" => "10.3265/Nefrologia.pre2010.Jul.10543" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699510050954?idApp=UINPBA000064" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251410050951?idApp=UINPBA000064" "url" => "/20132514/0000003000000006/v0_201502091649/X2013251410050951/v0_201502091649/en/main.assets" ] "itemAnterior" => array:17 [ "pii" => "X2013251410050978" "issn" => "20132514" "doi" => "10.3265/Nefrologia.pre2010.Jul.10553" "estado" => "S300" "fechaPublicacion" => "2010-11-01" "documento" => "article" "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Nefrologia (English Version). 2010;30:626-32" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 6086 "formatos" => array:3 [ "EPUB" => 311 "HTML" => 4922 "PDF" => 853 ] ] "en" => array:12 [ "idiomaDefecto" => true "titulo" => "Morbidity and Mortality in Diabetic Patients on Peritoneal Dialysis. Twenty-five Years of Experience at a Single Centre" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "626" "paginaFinal" => "632" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Morbimortalidad en pacientes diabéticos en diálisis peritoneal. Experiencia de 25 años en un solo centro" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig1" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "10553_16025_10789_en_10553_f1.jpg" "Alto" => 726 "Ancho" => 1047 "Tamanyo" => 39012 ] ] "descripcion" => array:1 [ "en" => "Survival of Patients with Type 1 Diabetes (DM1), Type 2 (DM2) and Non-Diabetic (ND) in Peritoneal Dialysis (PD)" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Francisco Coronel, F. Coronel, Secundino Cigarrán, S. Cigarrán, Jose Antonio Herrero, J.A. Herrero" "autores" => array:7 [ 0 => null 1 => array:2 [ "nombre" => "Francisco" "apellidos" => "Coronel" ] 2 => array:2 [ "Iniciales" => "F." "apellidos" => "Coronel" ] 3 => array:2 [ "nombre" => "Secundino" "apellidos" => "Cigarrán" ] 4 => array:2 [ "Iniciales" => "S." "apellidos" => "Cigarrán" ] 5 => array:2 [ "nombre" => "Jose Antonio" "apellidos" => "Herrero" ] 6 => array:2 [ "Iniciales" => "J.A." "apellidos" => "Herrero" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "X0211699510050970" "doi" => "10.3265/Nefrologia.pre2010.Jul.10553" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699510050970?idApp=UINPBA000064" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251410050978?idApp=UINPBA000064" "url" => "/20132514/0000003000000006/v0_201502091649/X2013251410050978/v0_201502091649/en/main.assets" ] "en" => array:15 [ "idiomaDefecto" => true "titulo" => "Renal immunoexpression of ghrelin is attenuated in human proliferative glomerulopathies" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "633" "paginaFinal" => "638" ] ] "autores" => array:1 [ 0 => array:3 [ "autoresLista" => "M. Danilewicz, Marian Danilewicz, M. Wagrowska-Danilewicz, Malgorzata Wagrowska-Danilewicz" "autores" => array:5 [ 0 => null 1 => array:4 [ "Iniciales" => "M." "apellidos" => "Danilewicz" "email" => array:1 [ 0 => "hobo@csk.umed.lodz.pl" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "affb" ] ] ] 2 => array:4 [ "nombre" => "Marian" "apellidos" => "Danilewicz" "email" => array:1 [ 0 => "hobo@csk.umed.lodz.pl" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "affc" ] ] ] 3 => array:3 [ "Iniciales" => "M." "apellidos" => "Wagrowska-Danilewicz" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "affb" ] ] ] 4 => array:3 [ "nombre" => "Malgorzata" "apellidos" => "Wagrowska-Danilewicz" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "affc" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "Department of Nephropathology, Medical University of Lodz, Lodz, Poland, " "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "affb" ] 1 => array:3 [ "entidad" => " Department of Nephropathology, Medical University of Lodz, Lodz, Poland, " "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "affc" ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "La inmunoexpresión renal de la grelina se atenúa en las glomerulopatías proliferativas humanas" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig1" "etiqueta" => "Tab. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "10312_108_1973_en_10312_t2.jpg" "Alto" => 150 "Ancho" => 1046 "Tamanyo" => 37570 ] ] "descripcion" => array:1 [ "en" => "The correlations between renal immunoexpression of ghrelin and selected parameters in PG, NPG and controls" ] ] ] "textoCompleto" => "<p class="elsevierStylePara"><span class="elsevierStyleBold">INTRODUCTION</span></p><p class="elsevierStylePara">Ghrelin is a 28 amino acid peptide hormone, first discovered in stomach cell extracts, that promotes the release of growth hormone<span class="elsevierStyleSup">1,2</span>. It is generated by processing of a 117 amino acid peptide, preproghrelin, by specific proteases and stored in secretory vesicles of endocrine cells<span class="elsevierStyleSup">3</span>. Human ghrelin gene is located on chromosome 3 and consists of 4 exons and 3 introns<span class="elsevierStyleSup">4</span>. A natural receptor for ghrelin (GHS-R) is a classical G-protein coupled receptor, consists of 336 amino acids and it was found to contain seven putative alpha-helical membrane spanning segments and three intracellular and extracellular loops<span class="elsevierStyleSup">5</span>. Apart from the gastric mucosa ghrelin is also expressed in other tissues, such as hypothalamus, pituitary, pancreas, immune cells, lung, ovary, testes, intestine, placenta and various tumors<span class="elsevierStyleSup">3,5</span>. Interestingly, Aydin et al.<span class="elsevierStyleSup">6</span> found that the urinary ghrelin level was higher than blood level, suggesting that the kidney might produce more ghrelin than stomach. It was also proposed that this locally produced ghrelin may modulate cell pathophisiology through an autocrine mechanism<span class="elsevierStyleSup">2</span>. Ghrelin is a multifunctional molecule, involved in many biological processes<span class="elsevierStyleSup">3</span>. Apart from the regulation of a growth hormone release it takes place in appetite regulation<span class="elsevierStyleSup">7</span> and gut motility<span class="elsevierStyleSup">8</span>. Moreover, it was suggested that ghrelin inhibits cell proliferation<span class="elsevierStyleSup">9</span>, decreases the production of proinflammatory cytokines by monocytes/macrophages<span class="elsevierStyleSup">10,11</span>, endothelin-1 (ET-1) release<span class="elsevierStyleSup">12,13</span>, and mononuclear cell binding<span class="elsevierStyleSup">11</span>. In view of the above, the aim of the present study was to evaluate renal ghrelin immunoexpression in proliferative (PG) and so called non-proliferative glomerulopathies (NPG) as well as to find whether this immunoexpression could correlate with ET-1 immunoexpression, interstitial monocytes/macrophages and interstitial fibrosis.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"><span class="elsevierStyleBold">MATERIAL AND METHODS</span></p><p class="elsevierStylePara"><span class="elsevierStyleBold"><br></br></span></p><p class="elsevierStylePara"><span class="elsevierStyleBold">Patients</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">Kidney tissue biopsies were obtained for diagnostic purposes percutaneously from 17 patients in PG group (11 males and 6 females, aged 22-58, mean age = 39.7) and 15 from NPG patients (9 males and 6 females, aged 25-63, mean age = 46.9). PG group included 9 cases of IgA nephropathy with diffuse mesangial proliferation, 5 cases of mesangiocapillary glomerulonephritis type I and 3 cases of proliferative mesangial glomerulopathy with IgM depositions. In this group 6 patients showed hematuria alone, 4 nephrotic syndrome, 4 proteinuria <3.5 g/day and 3 poteinuria and hematuria. Renal function impairment (serum creatinine >1.5 mg/dl) was noted in 4 cases. NPG group incorporated 10 cases of membranous glomerulopathy and 5 cases of minimal change disease. In these patients nephrotic syndrome was seen in 8 cases, proteinuria <3.5 g/day in 4, proteinuria and hematuria in 3 and renal function impairment (serum creatinine >1.5 mg/dl) in 1. The mean duration of PG prior to biopsy taking was 6.3 months (range 4.7-8.2 months), and the mean duration of NPG prior to biopsy was 7.7 months (range 7.5-9 months). At the biopsy none of the patients had been treated with immunosuppressive drugs. As a control 11 biopsy specimens of the kidneys removed because of trauma were used (the male to female ratio was 7:4, the mean age was 38.1±7.2). None of the persons from whom renal tissue originated were known to have had previous or actual renal disease. Before the semiquantitative and quantitative examinations were carried out, all control specimens were histologically examined by a nephropathologist and found to be normal renal tissue.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">In all cases, diagnosis of glomerulopathies were based on characteristic findings by light microscopy (sections stained with hematoxylin and eosin, Masson-Trichrome, Jones' silver impregnation and periodic acid-Schiff followed by Alcian Blue) as well as electron-microscopy and immunofluorescence using standard protocols. Thickness of each section was controlled according to the method described by Weibel<span class="elsevierStyleSup">14</span>.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"><span class="elsevierStyleBold">Immunohistochemistry</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">Paraffin sections were mounted onto superfrost slides, deparaffinized, then treated in a microwave oven in a solution of citrate buffer, pH 6.0 for 20 min at 750 W and transferred to distilled water. Endogenous peroxidase activity was blocked by 3% hydrogen peroxide in distilled water for 5 min, and then sections were rinsed with Tris-buffered saline (TBS, DakoCytomation, Denmark) and incubated with: rabbit-anti-human ghrelin antibody (Phoenix Pharmaceuticals. Inc., dilution 1:400), monoclonal mouse anti-human anti-endothelin-1 antibody (clone TR.ET.48.5, Sigma, Saint Louis, USA, dilution 1:250), and monoclonal mouse anti-human CD68 antibody (DakoCytomation, Denmark, dilution 1:100). Afterwards LSAB+/HRP Universal kit (DakoCytomation, Denmark) prepared according to the instructions of the manufacturer was used. Visualisation was performed by incubating the sections in a solution of 0.5 mg 3,3'-diaminobenzidine (DakoCytomation, Denmark), per ml Tris-HCl buffer, pH 7.6, containing 0.02% hydrogen peroxide, for 10 min. After washing, the sections were counter-stained with hematoxylin and coverslipped. For each antibody and for each sample a negative control were processed. Negative controls were carried out by incubation in the absence of the primary antibody and always yielded negative results. For ghrelin positive control was performed using gastric mucosa. In each specimen staining intensity of ghrelin in tubuli and ET-1 in the endothelium of peritubular capillaries as well as arterioles and in the renal tubular epithelial cells were recorded semiquantitatively by two independent observers in 7-10 adjacent high power fields and graded from 0 (staining not detectable), 1 (weak immunostaining), 2 (moderate immunostaining intensity) and 3 (strong staining). The mean grade was calculated by averaging grades assigned by the two authors and approximating the arithmetical mean to the nearest unity.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"><span class="elsevierStyleBold">Morphometry</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">Histological morphometry was performed by means of image analysis system consisting of a PC computer equipped with a Pentagram graphical tablet, Indeo Fast card (frame grabber, true-color, real-time), produced by Indeo (Taiwan), and color TV camera Panasonic (Japan) coupled to a Carl Zeiss microscope (Germany). This system was programmed (MultiScan 8.08 software, produced by Computer Scanning Systems, Poland) to calculate the number of objects (semiautomatic function) and the surface area of a structure using stereological net (with regulated number of points).</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">The coloured microscopic images were saved serially in the memory of a computer, and then quantitative examinations had been carried out. Interstitial area was measured as a surface fraction in sections stained with Masson trichrome using point counting method which is an adaptation of the principles of Weibel<span class="elsevierStyleSup">14</span>. The point spacing being 16 µm. Total numbers of the points of a net was 169, and total area was 36,864 sq. µm. Under the net described above 8-10 randomly selected adjacent fields of the renal cortex were investigated. Glomeruli and large blood vessels were neglected. The percentage interstitial area was an expression of the number of points overlying renal cortical interstitium as a percentage of the total points counted.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">Interstitial monocytes/macrophages were determined by counting CD68+ cells (semiautomatic function) in a sequence of ten consecutive computer images of 400x high power fields - 0.0047 mm<span class="elsevierStyleSup">2</span> each. The only adjustments of field were made to avoid glomeruli and large vessels. The results were expressed as a mean number of CD68 immunopositive cells per mm<span class="elsevierStyleSup">2</span>.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"><span class="elsevierStyleBold">Statistical methods</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">All values were expressed as the mean ± SD (standard deviation). The differences between groups were tested using Student t-test for independent samples preceded by evaluation of normality and homogenity of variances with Levene's test. Additionally the Mann-Whitney U test was used where appropriate. Correlation coefficients were calculated using Spearman's method. Results were considered statistically significant if P <0.05.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"><span class="elsevierStyleBold">RESULTS</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">In all renal biopsy specimens in both controls and NPG groups ghrelin was detected in the renal tubular epithelial cells of thin portion of the Henle’s loops and some distal tubules. This immunoexpression was focal and confined to the cytoplasm (figure 1, figure 2). In 14 PG patients (3 cases were completely negative) only slight focal immunoexpression of ghrelin in tubular epithelial cells of thin portion of the Henle’s loops and distal tubules was seen (figure 3). In all groups ghrelin immunoexpression was absent from glomerular and interstitial areas.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">The semiquantitative data of the immunoexpression of ghrelin in tubuli and ET-1 in the endothelium of peritubular capillaries and arterioles and in the renal tubular epithelium as well as morphometric data of the interstitial CD68+ cells and interstitial area appear from table 1. The mean value of the immunoexpression of ghrelin was significantly diminished in PG patients as compared to both NPG group and controls whereas this immunoexpression did not differ significantly between controls and NPG group. On the other hand the mean values of ET-1, interstitial CD68+ cells, as well as interstitial area were in PG group increased in comparison with controls and NPG patients, most of them significantly, meanwhile the differences between controls and NPG patients were not significant. The correlations between the tubular immunoexpression of ghrelin and ET-1, CD68+ cells as well as interstitial area are shown in table 2. In all groups there were significant negative correlations between immunostaining of ghrelin and ET-1, whereas negative correlation between immunostaining of ghrelin and CD68+ cells was significant only in PG group. The relationships between ghrelin and interstitial area were in all groups negative, but weak and not significant.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"><span class="elsevierStyleBold">DISCUSSION</span></p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">The reports on ghrelin in a kidney tissue are very scanty. In study of Gheraldoni et al. Ghrelin was not detectable in the kidney<span class="elsevierStyleSup">15</span>. Mori et al.<span class="elsevierStyleSup">16</span> demonstrated the ghrelin immunoreactivity in the mouse kidney which was much more abundant then that in the mouse plasma. They concluded that ghrelin is produced locally in the kidney and suggested the possible endocrine and/or paracrine role of this peptide. Although these authors found that ghrelin gene was expressed in glomerulus and renal cells, in our study the glomeruli showed no ghrelin immunoexpression in all cases investigated, whereas epithelial tubular cells were focally positive. Similarly, Dagli et al.<span class="elsevierStyleSup">2</span> noticed ghrelin immunoexpression in tubular epithelium of human normal kidney, but glomeruli were absent from ghrelin immunoreactivity. In the kidneys of normal rats, mice, hamsters and diabetic rats positive ghrelin immunoexpression was observed in distal tubular epithelium<span class="elsevierStyleSup">17,18</span>. There was no positive staining in the proximal tubules and glomeruli. However, to the best of our knowledge, this is the first study of ghrelin immunoexpression in human glomerulopathies.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">We found immunoexpression of ghrelin in normal kidneys and in both proliferative glomerulopathies usually accompanied with prominent interstitial leukocyte infiltrates and non proliferative with only a little interstitial damage. However, the major finding in the present study was the observation that tubular immunoreactivity of ghrelin in proliverative glomerulopathies was significantly diminished as compared to non proliferative patients and controls. Emerging evidence indicates that ghrelin has anti-inflammatory activity<span class="elsevierStyleSup">19-21</span> as it decreases the release of proinflammatory cytokines from T cells and monocytes<span class="elsevierStyleSup">22</span>. It was documented that ghrelin administration in mice significantly decreased serum TNF-alpha, IL-1 beta and IL-6 and as well as had protective effect against endoxemia-induced kidney injury<span class="elsevierStyleSup">13</span>. This raises the interesting possibility that low level or lack of ghrelin in proliferative glomerulopathies might have a role in interstitial damage in these cases which in part may also depend on ET-1. We found that immunoexpression of ET-1 was significantly increased in PG as compared to controls. In comparison to NPG, however, this difference was not significant. Moreover, in the present study there were negative significant correlations between immunoexpression of ghrelin and ET-1 in all groups investigated. Endothelin is a potent biological mediator which exists in three isoforms: endothelin-1, -2 and -3, however ET-1 is considered the clinically most important endothelin in human kidney disease<span class="elsevierStyleSup">13,24</span>. The main vascular effect of ET-1 is transient vasodilatation and profound and sustained vasoconstriction<span class="elsevierStyleSup">25</span>. It is also regarded as a potent mitogen for mesangial cells and as a pro-fibrotic protein<span class="elsevierStyleSup">26,27</span>. On the other hand ghrelin is known to inhibit ET-1 release probably via TNF-alpha pathway<span class="elsevierStyleSup">12,13</span>, thus high immunoexpression of ET-1 in PG patients may suggest, among others, an involvement of this protein in interstitial renal damage in these cases.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">As might be expected interstitial monocytes/macrophages were in PG group significantly more numerous than in NPG and controls. Moreover, CD68+ cells in PG patients significantly, negatively correlated with the immunoexpression of ghrelin. Monocytes/macrophages seem to be the major cell targets in the inhibition of the high mobility box 1 secretion in which ghrelin blocked its cytoplasmic translocation<span class="elsevierStyleSup">21</span>. In vitro study of Li et al.<span class="elsevierStyleSup">11</span> showed that ghrelin inhibited mononuclear cell binding, whereas findings of Chen et al.<span class="elsevierStyleSup">10</span> documented that ghrelin attenuates proinflammatory cytokine production in lung macrophages in rats. Our present finding suggests the interesting opportunity that ghrelin might have the potential to reduce monocytes/macrophages recruitment in the kidney tissue.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">Renal interstitial fibrosis is the final common pathway leading to end-stage disease in various nephropathies. We found the interstitial area to be significantly increased in PG as compared to NPG and controls. Although the correlations between interstitial area and ghrelin were in all groups negative, they were weak and not significant, thus no casual associations can be made between these parameters.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara">In conclusion, we can confirm the presence of ghrelin in tubular epithelial cells in normal and diseased human kidneys. Lack or low level of this protein in proliferative glomerulopathies may be, in part, responsible for interstitial accumulation of monocytes/macrophages in these cases.</p><p class="elsevierStylePara"> </p><p class="elsevierStylePara"><span class="elsevierStyleBold">Acknowledgement</span></p><p class="elsevierStylePara">This work was supported by grant No NN402088735</p><p class="elsevierStylePara"><a href="grande/10312_108_1973_en_10312_t2.jpg" class="elsevierStyleCrossRefs"><img src="10312_108_1973_en_10312_t2.jpg" alt="The correlations between renal immunoexpression of ghrelin and selected parameters in PG, NPG and controls"></img></a></p><p class="elsevierStylePara">Table 2. The correlations between renal immunoexpression of ghrelin and selected parameters in PG, NPG and controls</p><p class="elsevierStylePara"><a href="grande/10312_108_4741_en_10312_f1.jpg" class="elsevierStyleCrossRefs"><img src="10312_108_4741_en_10312_f1.jpg" alt="Strong focal immunoexpression of ghrelin in tubular epithelium of thin portion of the Henles loops in control case. x200."></img></a></p><p class="elsevierStylePara">Figure 1. Strong focal immunoexpression of ghrelin in tubular epithelium of thin portion of the Henles loops in control case. x200.</p><p class="elsevierStylePara"><a href="grande/10312_108_4746_en_10312_f2.jpg" class="elsevierStyleCrossRefs"><img src="10312_108_4746_en_10312_f2.jpg" alt="Intense focal immunoexpression of ghrelin in epithelial cells of thin portion of the Henles loops and several distal tubuli in NPG case. x200."></img></a></p><p class="elsevierStylePara">Figure 2. Intense focal immunoexpression of ghrelin in epithelial cells of thin portion of the Henles loops and several distal tubuli in NPG case. x200.</p><p class="elsevierStylePara"><a href="grande/10312_108_4747_en_10312_f3.jpg" class="elsevierStyleCrossRefs"><img src="10312_108_4747_en_10312_f3.jpg" alt="Weak, focal immunoexpression of ghrelin in tubular epithelium of thin portion of the Henles loops and distal tubuli in PG patient. x200."></img></a></p><p class="elsevierStylePara">Figure 3. Weak, focal immunoexpression of ghrelin in tubular epithelium of thin portion of the Henles loops and distal tubuli in PG patient. x200.</p><p class="elsevierStylePara"><a href="grande/10312_108_7951_en_10312_t1_copy1.jpg" class="elsevierStyleCrossRefs"><img src="10312_108_7951_en_10312_t1_copy1.jpg" alt="Renal immunoexpression of ghrelin, ET-1, and analysis of interstitial volume as well as CD68+ cells in PG, NPG and controls"></img></a></p><p class="elsevierStylePara">Table 1. Renal immunoexpression of ghrelin, ET-1, and analysis of interstitial volume as well as CD68+ cells in PG, NPG and controls</p>" "pdfFichero" => "P1-E506-S2860-A10312-EN.pdf" "tienePdf" => true "PalabrasClave" => array:2 [ "es" => array:4 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec441511" "palabras" => array:1 [ 0 => "Glomerulopatías" ] ] 1 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec441513" "palabras" => array:1 [ 0 => "Monocitos/macrófagos" ] ] 2 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec441515" "palabras" => array:1 [ 0 => "Endotelina 1" ] ] 3 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec441517" "palabras" => array:1 [ 0 => "Gherelina" ] ] ] "en" => array:4 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec441512" "palabras" => array:1 [ 0 => "Glomerulopathies" ] ] 1 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec441514" "palabras" => array:1 [ 0 => "Monocytes/macrophages" ] ] 2 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec441516" "palabras" => array:1 [ 0 => "Endothelin-1" ] ] 3 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec441518" "palabras" => array:1 [ 0 => "Ghrelin" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:1 [ "resumen" => "<p class="elsevierStylePara"><span class="elsevierStyleBold">Background: </span>Ghrelin is a novel 28 amino acid growth hormone-releasing peptide hormone that has been shown to inhibit cell proliferation and to decrease the production of proinflammatory cytokines by monocytes/macrophages. Moreover it decreases the release of endothelin-1 (ET-1), as well as mononuclear cell binding. <span class="elsevierStyleBold">Material and methods:</span> Seventeen patients with proliferative glomerulopathies (PG) and 15 patients with non-proliferative glomerulopathies (NPG) were examined by percutaneous renal biopsy. As a control 11 biopsy specimens of the kidneys removed because of trauma were used. The immunoexpression of ghrelin and ET-1 was assessed semiquantitatively whereas the interstitial monocytes/macrophages and interstitial area were evaluated quantitatively. <span class="elsevierStyleBold">Results:</span> The mean value of the immunoexpression of ghrelin was significantly diminished in PG patients as compared to both NPG group and controls while the mean values of ET-1, interstitial CD68+ cells, as well as interstitial area were in PG group increased in comparison with controls and NPG patients, most of them significantly. In all groups there were significant negative correlations between immunostaining of ghrelin and ET-1, whereas negative correlation between immunostaining of ghrelin and CD68+ cells was significant only in PG group. <span class="elsevierStyleBold">Conclusions:</span> We can confirm the presence of ghrelin in tubular epithelial cells in normal and diseased human kidneys. Lack or low level of this protein in proliferative glomerulopathies may be, in part, responsible for interstitial accumulation of monocytes/macrophages in these cases.</p>" ] "es" => array:1 [ "resumen" => "<p class="elsevierStylePara"><span class="elsevierStyleBold">Antecedentes</span>: La grelina es un péptido de reciente descubrimiento de 28 aminoácidos que libera la hormona del crecimiento y que se ha demostrado que inhibe la proliferación celular al igual que disminuye la producción de citoquinas proinflamatorias mediante monocitos/macrófagos. Además, reduce la liberación de endotelina-1 (ET-1), así como la unión de células mononucleares. <span class="elsevierStyleBold">Materiales y métodos</span>: Se practicó biopsia renal percutánea a diecisiete pacientes con glomerulopatías proliferatias (GP) y a quince pacientes con glomerulopatías no-proliferativas (GNP). Como grupo de control se utilizaron once biopsias de riñones que habían sido extirpados por traumatismo. La inmunoexpresión de la grelina y la ET-1 se determinó semicuantitativamente mientras que se realizaba un análisis cuantitativo de la zona intersticial y de los monocitos/macrófagos intersticiales. <span class="elsevierStyleBold">Resultados</span>: El valor medio de la inmunoexpresión de la grelina se vio considerablemente disminuido en pacientes con GP, en comparación con el grupo de pacientes con GNP y de control, mientras que los valores medios de ET-1, células CD68+ intersticiales, así como de la zona intersticial, se vieron incrementados en el grupo de pacientes con GP en comparación con el grupo de control y los pacientes con GNP, la mayoría de ellos de forma significativa. En todos los grupos se observaron correlaciones negativas importantes entre la expresión de grelina y de ET-1, mientras que la correlación negativa entre la expresión de grelina y de células CD68+ era relevante únicamente en el grupo de pacientes con PG. <span class="elsevierStyleBold">Conclusiones</span>: Puede confirmarse la presencia de grelina en las células epiteliales tubulares en riñones humanos normales y enfermos. La falta o el reducido nivel de esta proteína en las glomerolupatías proliferativas pueden ser, en parte, la causa de la acumulación intersticial de monocitos/macrófagos en estos casos.</p>" ] ] "multimedia" => array:5 [ 0 => array:8 [ "identificador" => "fig1" "etiqueta" => "Tab. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "10312_108_1973_en_10312_t2.jpg" "Alto" => 150 "Ancho" => 1046 "Tamanyo" => 37570 ] ] "descripcion" => array:1 [ "en" => "The correlations between renal immunoexpression of ghrelin and selected parameters in PG, NPG and controls" ] ] 1 => array:8 [ "identificador" => "fig2" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "10312_108_4741_en_10312_f1.jpg" "Alto" => 366 "Ancho" => 504 "Tamanyo" => 35866 ] ] "descripcion" => array:1 [ "en" => "Strong focal immunoexpression of ghrelin in tubular epithelium of thin portion of the Henles loops in control case. x200." ] ] 2 => array:8 [ "identificador" => "fig3" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "10312_108_4746_en_10312_f2.jpg" "Alto" => 367 "Ancho" => 507 "Tamanyo" => 48571 ] ] "descripcion" => array:1 [ "en" => "Intense focal immunoexpression of ghrelin in epithelial cells of thin portion of the Henles loops and several distal tubuli in NPG case. x200." ] ] 3 => array:8 [ "identificador" => "fig4" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "10312_108_4747_en_10312_f3.jpg" "Alto" => 367 "Ancho" => 507 "Tamanyo" => 40538 ] ] "descripcion" => array:1 [ "en" => "Weak, focal immunoexpression of ghrelin in tubular epithelium of thin portion of the Henles loops and distal tubuli in PG patient. x200." ] ] 4 => array:8 [ "identificador" => "fig5" "etiqueta" => "Tab. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "10312_108_7951_en_10312_t1_copy1.jpg" "Alto" => 128 "Ancho" => 597 "Tamanyo" => 18327 ] ] "descripcion" => array:1 [ "en" => "Renal immunoexpression of ghrelin, ET-1, and analysis of interstitial volume as well as CD68+ cells in PG, NPG and controls" ] ] ] "bibliografia" => array:2 [ "titulo" => "Bibliography" "seccion" => array:1 [ 0 => array:1 [ "bibliografiaReferencia" => array:27 [ 0 => array:3 [ "identificador" => "bib1" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999;402: 656-60. <a href="http://www.ncbi.nlm.nih.gov/pubmed/10604470" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 1 => array:3 [ "identificador" => "bib2" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Dagli F, Aydin S, Karaglou A,\u{A0}Akpolat N, Ozercan IH, Ozercan MR.Ghrelin expression in normal kidney tissue and renal carcinomas. Pathol Res Pract 2009;205:165-73. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19054628" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 2 => array:3 [ "identificador" => "bib3" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Grönberg M, Tsolakis AV, Magnusson L, Janson ET, Saras J.\u{A0}Distribution of obestatin and ghrelin in human tissues: immunoreactive cells in the gastrointestinal tract, pancreas, and mammary glands. J Histochem Cytochem 2008;56:793-801. <a href="http://www.ncbi.nlm.nih.gov/pubmed/18474938" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 3 => array:3 [ "identificador" => "bib4" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Wajnranch MP, Ten IS, Gertner JM, Leibel RL. Genomic organization of human ghrelin gene. J\u{A0}Med Gen 2000;1:231-3." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 4 => array:3 [ "identificador" => "bib5" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Katergari SA, Milousis A,\u{A0}Pagonopoulou O,\u{A0}Asimakopoulos B,\u{A0}Nikolettos NK.\u{A0}Ghrelin in pathological conditions. Endocr J 2008;55:439-53. <a href="http://www.ncbi.nlm.nih.gov/pubmed/18323676" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 5 => array:3 [ "identificador" => "bib6" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Aydin S, Karatas F, Geckil H. Simultaneous quantification of acylated and desacylated ghrelin in biological fluids. Biomed Chromatogr 2008;22:1354-9. <a href="http://www.ncbi.nlm.nih.gov/pubmed/18651597" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 6 => array:3 [ "identificador" => "bib7" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N, et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 2001;120:337-45. <a href="http://www.ncbi.nlm.nih.gov/pubmed/11159873" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 7 => array:3 [ "identificador" => "bib8" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Tack J, Depoortere I, Bisschops R, Delporte C, Coulie B, Meulemans A, et al. Influence of ghrelin on interdigestive gastrointestinal motility in humans. Gut 2006;55:327-33. <a href="http://www.ncbi.nlm.nih.gov/pubmed/16216827" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 8 => array:3 [ "identificador" => "bib9" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Volante M, Allis E, Fulcheri E, Cassoni P, Ghigo E,\u{A0}Muccioli G,\u{A0}et al. Ghrelin in fetal thyroid and follicular tumors and cell lines: expression and effects on tumor growth. Am J Pathol\u{A0}2003;162:645-54. <a href="http://www.ncbi.nlm.nih.gov/pubmed/12547722" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 9 => array:3 [ "identificador" => "bib10" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Chen J, Liu X, Shu Q, Li S, Luo F. Ghrelin attenuates lipopolysaccharide-induced acute lung injury through NO pathway. Med Sci Monit 2008;14:BR141-146." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 10 => array:3 [ "identificador" => "bib11" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Li WG, Gavrila D, Liu X, Wang L, Gunnlaugsson S, Stoll LL, et al. Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 2004;109:2221-6. <a href="http://www.ncbi.nlm.nih.gov/pubmed/15117840" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 11 => array:3 [ "identificador" => "bib12" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Wu R, Dong W, Zhou M, Cui X, Hank Simms H, Wang P.\u{A0}Ghrelin improves tissue perfusion in severe sepsis via downregulation of endothelin-1. Cardiovasc Res 2005;68:318-26. <a href="http://www.ncbi.nlm.nih.gov/pubmed/16018991" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 12 => array:3 [ "identificador" => "bib13" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Wang W,\u{A0}Bansal S, Falk S, Ljubanovic D, Schrier R. Ghrelin protects mice against endotoxemia-induced acute kidney injury. Am J Physiol Renal Physiol 2009;297:F1032-1037." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 13 => array:3 [ "identificador" => "bib14" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Weibel ER. Point Counting Methods. In: Weibel ER. Stereological Methods. vol. 1. London, New York, Toronto, Sydney, San Francisco: Academic Press, 1979; 101-159." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 14 => array:3 [ "identificador" => "bib15" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Ghelardoni S, Carnicelli V, Frascarelli S, Ronca-Testoni S, Zucchi R. Ghrelin tissue distribution: comparison between gene and protein expression. J Endocrinol Invest 2006;29:115-21. <a href="http://www.ncbi.nlm.nih.gov/pubmed/16610236" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 15 => array:3 [ "identificador" => "bib16" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Mori K, Yoshimoto A, Takaya K, Hosoda K, Ariyasu H, Yahata K, et al. Kidney produces a novel acylated peptide, ghrelin. FEBS Lett 2000;486:213-6. <a href="http://www.ncbi.nlm.nih.gov/pubmed/11119706" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 16 => array:3 [ "identificador" => "bib17" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Kuloglu T, Dabak DO. Determination of ghrelin immunoreactivity in kidney tissues of diabetic rats. Ren Fail 2009;31:562-6. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19839851" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 17 => array:3 [ "identificador" => "bib18" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "18.\u{A0}Yabuki A, Taharaguchi S, Ichii O, Kojima M, Nishi Y, Mifune H, et al. Immunohistochemical localization of ghrelin in rodent kidneys. Histochem Cell Biol\u{A0}200;126:231-8." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 18 => array:3 [ "identificador" => "bib19" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "19.\u{A0}Demers A, Caron V, Rodrigue-Way A, Wahli W, Ong H, Tremblay A. A concerted kinase interplay identifies PPARgamma as a molecular target of ghrelin signaling in macrophages. PLoS One 2009;4:e7728. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19888469" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 19 => array:3 [ "identificador" => "bib20" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "20.\u{A0}García EA, Korbonits M. Gherelin ans cardiovascular health. Curr Opin Pharmacol 200;6:142-7." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 20 => array:3 [ "identificador" => "bib21" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "21.\u{A0}Chorny A, Anderson P, González-Rey E, Delgado M. Gherelin protects against experimental sepsis by inhibiting high-mobility group box 1 release and by killing bacteria. J Immunol 200;180:8369-77." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 21 => array:3 [ "identificador" => "bib22" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "22.\u{A0}Dixit VD, Yang H, Cooper-Jenkins A, Giri BB, Patel K, Taub DD. Reduction of T cell-derived ghrelin enhances proinflammatory cytokine expression: implications for age-associated increases in inflammation. Blood 2009;113:5202-5. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19324904" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 22 => array:3 [ "identificador" => "bib23" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "23.\u{A0}Luscher TF, Boulanger CM, Dohi Y, Yang ZH. Endothelium-derived contracting factors. Hypertension 1992;19:117-30. <a href="http://www.ncbi.nlm.nih.gov/pubmed/1737645" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 23 => array:3 [ "identificador" => "bib24" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "24.\u{A0}Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332:411-5. <a href="http://www.ncbi.nlm.nih.gov/pubmed/2451132" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 24 => array:3 [ "identificador" => "bib25" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "25.\u{A0}Kiowski W, Luscher TF, Lindner L, Buchler FR. Endothelin-1-induced vasoconstriction in humans. Reversal by calcium channel blockade, but not by nitrovasodilatators or endothelium-derived relaxing factor. Circulation 1991;83:469-75. <a href="http://www.ncbi.nlm.nih.gov/pubmed/1846783" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 25 => array:3 [ "identificador" => "bib26" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Chahdi A, Sorokin A. Endothelin-1 induces p66Shc activation through EGF receptor transactivation: Role of beta(1)Pix/Galpha(i3) interaction. Cell Signal 2010;22:325-9. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19804820" target="_blank">[Pubmed]</a>" "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] 26 => array:3 [ "identificador" => "bib27" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "27.\u{A0} Leask A. Signaling in fibrosis: targeting the TGF beta, endothelin-1 and CCN2 axis in scleroderma. Front Biosci 2009;1:115-22." "contribucion" => array:1 [ 0 => null ] "host" => array:1 [ 0 => null ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/20132514/0000003000000006/v0_201502091649/X201325141005096X/v0_201502091649/en/main.assets" "Apartado" => array:4 [ "identificador" => "35441" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Originals" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/20132514/0000003000000006/v0_201502091649/X201325141005096X/v0_201502091649/en/P1-E506-S2860-A10312-EN.pdf?idApp=UINPBA000064&text.app=https://revistanefrologia.com/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X201325141005096X?idApp=UINPBA000064" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 5 | 11 | 16 |
2024 October | 58 | 45 | 103 |
2024 September | 43 | 30 | 73 |
2024 August | 61 | 54 | 115 |
2024 July | 39 | 29 | 68 |
2024 June | 110 | 34 | 144 |
2024 May | 186 | 35 | 221 |
2024 April | 167 | 25 | 192 |
2024 March | 93 | 24 | 117 |
2024 February | 36 | 30 | 66 |
2024 January | 31 | 32 | 63 |
2023 December | 17 | 17 | 34 |
2023 November | 40 | 33 | 73 |
2023 October | 36 | 38 | 74 |
2023 September | 35 | 39 | 74 |
2023 August | 41 | 19 | 60 |
2023 July | 31 | 29 | 60 |
2023 June | 31 | 19 | 50 |
2023 May | 45 | 26 | 71 |
2023 April | 25 | 17 | 42 |
2023 March | 43 | 21 | 64 |
2023 February | 33 | 21 | 54 |
2023 January | 28 | 28 | 56 |
2022 December | 40 | 31 | 71 |
2022 November | 58 | 29 | 87 |
2022 October | 44 | 56 | 100 |
2022 September | 37 | 36 | 73 |
2022 August | 44 | 41 | 85 |
2022 July | 27 | 36 | 63 |
2022 June | 29 | 29 | 58 |
2022 May | 35 | 37 | 72 |
2022 April | 45 | 33 | 78 |
2022 March | 31 | 40 | 71 |
2022 February | 35 | 35 | 70 |
2022 January | 58 | 33 | 91 |
2021 December | 38 | 58 | 96 |
2021 November | 39 | 32 | 71 |
2021 October | 41 | 41 | 82 |
2021 September | 34 | 37 | 71 |
2021 August | 34 | 31 | 65 |
2021 July | 39 | 30 | 69 |
2021 June | 21 | 20 | 41 |
2021 May | 39 | 30 | 69 |
2021 April | 92 | 30 | 122 |
2021 March | 59 | 31 | 90 |
2021 February | 46 | 9 | 55 |
2021 January | 31 | 22 | 53 |
2020 December | 37 | 16 | 53 |
2020 November | 36 | 20 | 56 |
2020 October | 24 | 13 | 37 |
2020 September | 16 | 7 | 23 |
2020 August | 29 | 12 | 41 |
2020 July | 36 | 9 | 45 |
2020 June | 30 | 12 | 42 |
2020 May | 32 | 12 | 44 |
2020 April | 27 | 17 | 44 |
2020 March | 19 | 16 | 35 |
2020 February | 26 | 17 | 43 |
2020 January | 30 | 18 | 48 |
2019 December | 31 | 24 | 55 |
2019 November | 25 | 17 | 42 |
2019 October | 12 | 8 | 20 |
2019 September | 18 | 17 | 35 |
2019 August | 12 | 12 | 24 |
2019 July | 26 | 18 | 44 |
2019 June | 29 | 11 | 40 |
2019 May | 18 | 19 | 37 |
2019 April | 56 | 23 | 79 |
2019 March | 41 | 19 | 60 |
2019 February | 28 | 10 | 38 |
2019 January | 39 | 23 | 62 |
2018 December | 83 | 28 | 111 |
2018 November | 101 | 11 | 112 |
2018 October | 74 | 11 | 85 |
2018 September | 66 | 14 | 80 |
2018 August | 50 | 15 | 65 |
2018 July | 45 | 17 | 62 |
2018 June | 46 | 10 | 56 |
2018 May | 48 | 23 | 71 |
2018 April | 60 | 6 | 66 |
2018 March | 35 | 6 | 41 |
2018 February | 44 | 5 | 49 |
2018 January | 33 | 10 | 43 |
2017 December | 47 | 11 | 58 |
2017 November | 38 | 6 | 44 |
2017 October | 51 | 8 | 59 |
2017 September | 37 | 12 | 49 |
2017 August | 34 | 6 | 40 |
2017 July | 30 | 18 | 48 |
2017 June | 41 | 10 | 51 |
2017 May | 58 | 8 | 66 |
2017 April | 52 | 20 | 72 |
2017 March | 30 | 4 | 34 |
2017 February | 36 | 8 | 44 |
2017 January | 29 | 15 | 44 |
2016 December | 49 | 7 | 56 |
2016 November | 78 | 11 | 89 |
2016 October | 113 | 5 | 118 |
2016 September | 133 | 4 | 137 |
2016 August | 173 | 5 | 178 |
2016 July | 222 | 8 | 230 |
2016 June | 145 | 0 | 145 |
2016 May | 129 | 0 | 129 |
2016 April | 91 | 0 | 91 |
2016 March | 81 | 0 | 81 |
2016 February | 113 | 0 | 113 |
2016 January | 100 | 0 | 100 |
2015 December | 137 | 0 | 137 |
2015 November | 79 | 0 | 79 |
2015 October | 65 | 0 | 65 |
2015 September | 77 | 0 | 77 |
2015 August | 89 | 0 | 89 |
2015 July | 64 | 0 | 64 |
2015 June | 38 | 0 | 38 |
2015 May | 67 | 0 | 67 |
2015 April | 8 | 0 | 8 |