Journal Information
Vol. 34. Issue. 5.September 2014
Pages 545-692
Vol. 34. Issue. 5.September 2014
Pages 545-692
Full text access
Calcio sérico y huesos: efectos de la hormona paratiroidea, del fosfato, de la vitamina D y de la uremia
Serum calcium and bone: effect of PTH, phosphate, vitamin D and uremia
Visits
18474
Barton S. Levinea, Mariano Rodríguezb, Arnold J. Felsenfelda
a Departments of Medicine, VA Greater Los Angeles Healthcare System and the David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,
b Department of Nephrology, Red in Ren. IMIBIC. Hospital Universitario Reina Sofía, Córdoba, Spain,
This item has received
Article information

El hiperparatiroidismo se desarrolla en la enfermedad renal crónica (ERC). La disminución de la respuesta calcémica a la hormona paratiroidea (PTH) contribuye al desarrollo de hiperparatiroidismo y es probable que se deba a una reducción de la emisión de calcio de los huesos. Entre los factores que contribuyen a la disminución de la respuesta calcémica a la PTH en la ERC se encuentran: 1) la hiperfosfatemia; 2) la disminución del calcitriol sérico; 3) la desensibilización del receptor PTHR1; 4) la presencia de fragmentos de gran tamaño de los extremos aminoterminales de la hormona paratiroidea que actúan en el receptor carboxi-PTH y 5) las toxinas urémicas. Asimismo, la administración prolongada de una dosis elevada de calcitriol podría disminuir la reserva intercambiable de calcio independiente de la hormona paratiroidea. El objetivo de esta revisión es facilitar la comprensión de cómo afectan los factores mencionados anteriormente a la emisión de calcio procedente del hueso en la ERC. Como conclusión, aún queda mucho por aprender acerca del papel de los huesos en la regulación del calcio sérico.

Palabras clave:
Vitamina D
Palabras clave:
Uremia
Palabras clave:
Fosfato
Palabras clave:
Hormona paratiroidea
Palabras clave:
Calcio
Palabras clave:
Hueso

Hyperparathyroidism develops in chronic kidney disease (CKD). A decreased calcemic response to parathyroid hormone (PTH) contributes to the development of hyperparathyroidism and is presumed due to reduced calcium efflux from bone. Contributing factors to the decreased calcemic response to PTH in CKD include: 1) hyperphosphatemia; 2) decreased serum calcitriol; 3) downregulation of the PTH1 receptor; 4) large, truncated amino-terminal PTH fragments acting at the carboxy-PTH receptor; and 5) uremic toxins. Also, prolonged high dose calcitriol administration may decrease the exchangeable pool of bone calcium independent of PTH. The goal of the review is to provide a better understanding of how the above cited factors affect calcium efflux from bone in CKD. In conclusion, much remains to be learned about the role of bone in the regulation of serum calcium.

Keywords:
Vitamin D
Keywords:
Uremia
Keywords:
Phosphate
Keywords:
Parathyroid hormone
Keywords:
Calcium
Keywords:
Bone
Full text is only aviable in PDF
Bibliografía
[1]
Massry SG, Coburn JW, Lee DBW, Jowsey J, Kleeman CR. Skeletal resistance to parathyroid hormone in renal failure. Studies in 105 human subjects. Ann Intern Med 1973;78:357-64. [Pubmed]
[2]
Wesseling-Perry K, Harkins GC, Wang HJ, Elashoff R, Gales B, Horwitz MJ, et al. The calcemic response to continuous parathyroid hormone (PTH)(1-34) infusion in end-stage kidney disease varies according to bone turnover: A potential role for PTH (7-84). J Clin Endocrinol Metab 2010;95:2772-80. [Pubmed]
[3]
Brent GA, LeBoff MS, Seely EW, Conlin PR, Brown EM. Relationship between the concentration and rate of change of calcium and serum intact parathyroid hormone levels in normal humans. J Clin Endocrinol Metab 1988;67:944-50. [Pubmed]
[4]
Berdud I, Martin Malo A, Almaden Y, Aljama P, Rodriguez M, Felsenfeld AJ. The PTH-calcium relationship during a range of infused PTH doses in the parathyroidectomized rat. Calcif Tissue Int 1998;62:457-61. [Pubmed]
[5]
Wang W, Lewin E, Olgaard K. PTH is not a key hormone in the rapid minute-to-minute regulation of the plasma Ca homeostasis in the rat. Eur J Clin Invest 1999;29:309-20. [Pubmed]
[6]
Alexander RL Jr. Calcium homeostasis in the thyroparathyroidectomized dog. Endocrinology 1965;77:985-90. [Pubmed]
[7]
Felsenfeld AJ. Bone, parathyroid hormone and the response to the rapid induction of hypocalcemia. Eur J Clin Invest 1999;29:274-7. [Pubmed]
[8]
Nguyen-Yamamoto L, Rousseau L, Brossard JH, Lepage R, D'Amour P. Synthetic carboxyl-terminal fragments of parathyroid hormone (PTH) decrease ionized calcium concentrations in rats by acting on a receptor different from the PTH/PTH-related peptide receptor. Endocrinology 2001;142:1386-92. [Pubmed]
[9]
Parfitt AM. Calcium homeostasis. In: Mundy GR, Martin TJ (eds.). Physiology and pharmacology of bone. Chap 1. Heidelberg: Springer-Verlag; 1993. pp. 1-65.
[10]
Talmage RV. Effect of fasting and parathyroid hormone injection on plasma 45Ca concentrations in rats. Calcif Tissue Res 1975;17:103-12. [Pubmed]
[11]
Wong KM, Klein L. Circadian variations in contributions of bone and intestine to plasma calcium in dogs. Am J Physiol 1984;246:R688-92. [Pubmed]
[12]
D'Amour P, Palardy J, Bahsali G, Mallette LE, DeLéan A, Lepage R. The modulation of circulating parathyroid hormone immunoheterogeneity in man by ionized calcium concentration. J Clin Endocrinol Metab 1992;74:525-32. [Pubmed]
[13]
Brossard JH, Cloutier M, Roy L, Lepage R, Gascon-Barré M, D'Amour P. Accumulation of a non-(1-84) molecular form of parathyroid hormone (PTH) detected by intact PTH assay in renal failure: Importance in the interpretation of PTH values. J Clin Endocrinol Metab 1996;81:3923-9. [Pubmed]
[14]
Slatopolsky E, Finch J, Clay P, Martin D, Sicard G, Singer G, et al. A novel mechanism for skeletal resistance in uremia. Kidney Int 2000;58:753-61. [Pubmed]
[15]
Divieti P, John MR, Juppner H, Bringhurst FR. Human PTH-(7-84) inhibits bone resorption in vitro via actions independent of the type 1 PTH/PTHrP receptor. Endocrinology 2002;143:171-6. [Pubmed]
[16]
Murray TM, Rao LG, Divieti P, Bringhurst FR. Parathyroid hormone secretion and action: Evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxy-terminal ligands. Endocr Rev 2005;26:78-113. [Pubmed]
[17]
Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metab 2010;21:369-74. [Pubmed]
[18]
Friedman PA, Goodman WG. PTH(1-84)/PTH(7-84): a balance of power. Am J Physiol Renal Physiol 2006;290:F975-84. [Pubmed]
[19]
Usatii M, Rousseau L, Demers C, Petit JL, Brossard JH, Gascon-Barré M, et al. Parathyroid hormone fragments inhibit active hormone and hypocalcemia-induced 1,25(OH)2D synthesis. Kidney Int 2007;72:1330-5. [Pubmed]
[20]
Rodriguez M, Felsenfeld AJ, Llach F. Calcemic response to parathyroid hormone in renal failure: Role of calcitriol and the effect of parathyroidectomy. Kidney Int 1991;40:1063-8. [Pubmed]
[21]
Andress D, Felsenfeld AJ, Voigts A, Llach F. Parathyroid hormone response to hypocalcemia in hemodialysis patients with osteomalacia. Kidney Int 1983;24:364-70. [Pubmed]
[22]
Voigts A, Felsenfeld AJ, Andress D, Llach F. Parathyroid hormone and bone histology: Response to hypocalcemia in osteitis fibrosa. Kidney Int 1984;25:445-52. [Pubmed]
[23]
Felsenfeld AJ, Rodriguez M, Dunlay R, Llach F. A comparison of parathyroid-gland function in haemodialysis patients with different forms of renal osteodystrophy. Nephrol Dial Transplant 1991;6:244-51. [Pubmed]
[24]
Kurz P, Monier-Faugere MC, Bognar B, Werner E, Roth P, Vlachojannis J, et al. Evidence for abnormal calcium homeostasis in patients with adynamic bone disease. Kidney Int 1994;46:855-61. [Pubmed]
[25]
Malluche HH, Porter DS, Monier-Faugere MC, Mawad H, Pienkowski D. Differences in bone quality in low- and high-turnover renal osteodystrophy. J Am Soc Nephrol 2012;23:525-32. [Pubmed]
[26]
Albright F, Bauer W, Ropes M, Aub JC. Studies of calcium and phosphorus metabolism. IV. The effect of the parathyroid hormone. J Clin Invest 1929;7:139-81. [Pubmed]
[27]
Raisz LG, Niemann I. Effect of phosphate, calcium, and magnesium on bone resorption and hormonal responses in tissue culture. Endocrinology 1969;85:446-52. [Pubmed]
[28]
Krapf R, Glatz M, Hulter HN. Neutral phosphate administration generates and maintains renal metabolic alkalosis and hyperparathyroidism. Am J Physiol 1995;268:F802-7. [Pubmed]
[29]
Tallon S, Berdud I, Hernandez A, Concepcion MT, Almaden Y, Torres A, et al. The relative effects of PTH and dietary phosphorus on calcitriol production in normal and azotemic rats. Kidney Int 1996;49:1441-6. [Pubmed]
[30]
Li F, Muhlbauer RC. Food fractionation is a powerful tool to increase bone mass in growing rats and to decrease bone mass in aged rats: Modulation of the effect of dietary phosphate. J Bone Miner Res 1999;14:1457-65. [Pubmed]
[31]
Jara A, Lee E, Stauber D, Moatamed F, Felsenfeld AJ, Kleeman CR. Phosphate depletion in the rat: effect of bisphosphonates and the calcemic response to PTH. Kidney Int 1999;55:1434-43. [Pubmed]
[32]
Parfitt AM. Misconceptions (3): calcium leaves bone only by resorption and enters only by formation. Bone 2003;33:259-63. [Pubmed]
[33]
Marenzana M, Shipley AM, Squitiero P, Kunkel JG, Rubinacci A. Bone as an ion exchange organ: evidence for instantaneous cell-dependent calcium efflux from bone not due to resorption. Bone 2005;37:545-54. [Pubmed]
[34]
Somerville PJ, Kaye M. Evidence that resistance to the calcemic action of parathyroid hormone in rats with acute uremia is caused by phosphate retention. Kidney Int 1979;16:552-60. [Pubmed]
[35]
Somerville PJ, Kaye M. Action of phosphorus on calcium release in isolated perfused rat tails. Kidney Int 1982;22:348-54. [Pubmed]
[36]
Rodriguez M, Martin Malo A, Martinez ME, Torres A, Felsenfeld AJ, Llach F. Calcemic response to parathyroid hormone in renal failure: role of phosphorus and its effect on calcitriol. Kidney Int 1991;40:1055-62. [Pubmed]
[37]
Slatopolsky E, Caglar S, Gradowska L, Canterbury J, Reiss E, Bricker NS. On the prevention of secondary hyperparathyroidism in experimental chronic renal disease using "proportional reduction" of dietary phosphorus intake. Kidney Int 1972;2:147-51. [Pubmed]
[38]
Kaplan MA, Canterbury JM, Bourgoignie JJ, Veliz G, Gavellas G, Reiss E, et al. Reversal of hyperparathyroidism in response to dietary phosphorus restriction in uremic dogs. Kidney Int 1979;15:43-8. [Pubmed]
[39]
Portale AA, Booth BE, Halloran B, Morris RC Jr. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest 1984;73:1580-9. [Pubmed]
[40]
Lopez-Hilker S, Dusso AS, Rapp NS, Martin KJ, Slatopolsky E. Phosphorus restriction reverses secondary hyperparathyroidism independent of changes in calcium and calcitriol. Am J Physiol 1990;259:F432-7. [Pubmed]
[41]
Combe C, Aparicio M. Phosphorus and protein restriction and parathyroid function in chronic renal failure. Kidney Int 1994;46:1381-6. [Pubmed]
[42]
Combe C, Morel D, de Precigout V, Blanchetier V, Bouchet JL, Potaux L, et al. Long-term control of hyperparathyroidism in advanced renal failure by low-phosphorus diet supplemented with calcium (without changes in plasma calcitriol). Nephron 1995;70:287-95. [Pubmed]
[43]
Streck W, Waterhouse C, Haddad JG. Glucocorticoid effects in vitamin D intoxication. Arch Intern Med 1979;139:974-7. [Pubmed]
[44]
Heyburn PJ, Francis RM, Peacock M. Acute effects of saline, calcitonin, and hydrocortisone on plasma calcium in vitamin D intoxication. Br Med J 1979;1:232-3. [Pubmed]
[45]
Davies M, Mawer EB, Freemont AJ. The osteodystrophy of hypervitaminosis D: A metabolic study. Q J Med 1986;61:911-9. [Pubmed]
[46]
Rizzoli R, Stoermann C, Ammann P, Bonjour JP. Hypercalcemia and hyperosteolysis in vitamin D intoxication: effects of clodronate therapy. Bone 1994;15:193-8. [Pubmed]
[47]
Selby PL, Davies M, Marks JS, Mawer EB. Vitamin D intoxication causes hypercalcaemia by increased bone resorption which responds to pamidronate. Clin Endocrinol (Oxf) 1995;43:531-6.
[48]
Adams JS, Lee G. Gains in bone mineral density with resolution of vitamin D intoxication. Ann Intern Med 1997;127:203-6. [Pubmed]
[49]
Raisz LG, Trummel CL, Holick MF, DeLuca HF. 1,25-Dihydroxycholecalciferol: a potent stimulator of bone resorption in tissue culture. Science 1972;175:768-9.
[50]
Holtrop ME, Cox KA, Clark MB, Holick MF, Anast CS. 1,25-dihydroxycholecalciferol stimulates osteoclasts in rat bones in the absence of parathyroid hormone. Endocrinology 1981;108:2293-301.
[51]
Miao D, He B, Lanske B, Bai XY, Tong XK, Hendy GN, et al. Skeletal abnormalities in Pth-null mice are influenced by dietary calcium. Endocrinology 2004;145:2046-53. [Pubmed]
[52]
Chen PS Jr., Bosmann B. Comparison of the hypercalcemic action of vitamins D2 and D3 in chicks and the effect on tetracycline fixation by bone. J Nutr 1965;87:148-54. [Pubmed]
[53]
Klein L. Direct measurement of bone resorption and calcium conservation during vitamin D deficiency or hypervitaminosis D. Proc Natl Acad Sci U S A 1980;77:1818-22. [Pubmed]
[54]
Landman JO, Schweitzer DH, Frolich M, Hamdy NA, Papapoulos SE. Recovery of serum calcium concentrations following acute hypocalcemia in patients with osteoporosis on long-term oral therapy with the bisphosphonate pamidronate. J Clin Endocrinol Metab 1995;80:524-8. [Pubmed]
[55]
Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, et al. Normocalcemia is maintained in mice under conditions of calcium by vitamin D-induced inhibition of bone mineralization. J Clin Invest 2012;122:1803-15. [Pubmed]
[56]
Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, et al. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 1999;140:4982-7. [Pubmed]
[57]
Cloutier M, Gascon-Barre M, D'Amour P. Chronic adaptation of dog parathyroid function to a low-calcium-high-sodium-Vitamin D-deficient diet. J Bone Miner Res 1992;7:1021-8. [Pubmed]
[58]
Papapoulos SE, Clemens TL, Fraher LJ, Gleed J, O'Riordan JL. Metabolites of vitamin D in human vitamin-D deficiency: effect of vitamin D3 or 1,25-dihydroxy-cholecalciferol. Lancet 1980;2:612-5. [Pubmed]
[59]
Stanbury SW, Taylor CM, Lumb GA, et al. Formation of vitamin D metabolites following correction of human vitamin D deficiency. Miner Electrolyte Metab 1981;5:212-27.
[60]
Venkataraman PS, Tsang RC, Buckley DD, Ho M, Steichen JJ. Elevation of serum 1,25-dihydroxyvitamin D in response to physiologic doses of vitamin D in vitamin D-deficient infants. J Pediatr 1983;103:416-9. [Pubmed]
[61]
Massry SG, Stein R, Garty J, Arieff AI, Coburn JW, Norman AW, et al. Skeletal resistance to the calcemic action of parathyroid hormone in uremia: Role of 1,25(OH)2D3. Kidney Int 1976;9:467-74. [Pubmed]
[62]
Massry SG, Tuma S, Dua A, Goldstein DA. Reversal of skeletal resistance to parathyroid hormone in uremia by vitamin D metabolites. Evidence for requirement of 1,25(OH)2D3. J Lab Clin Med 1979;94:152-7. [Pubmed]
[63]
Goodman WG, Ramirez JA, Belin TR, Chon Y, Gales B, Segre GV, et al. Development of adynamic bone in patients with secondary hyperparathyroidism after intermittent calcitriol therapy. Kidney Int 1994;46:1160-6. [Pubmed]
[64]
Pahl M, Jara A, Bover J, Felsenfeld AJ. Studies in a hemodialysis patient indicating that calcitriol may have a direct suppressive effect on bone. Nephron 1995;71:218-23. [Pubmed]
[65]
Levine BS, Song M. Pharmacokinetics and efficacy of pulse oral versus intravenous calcitriol in hemodialysis patients. J Am Soc Nephrol 1996;7:488-96. [Pubmed]
[66]
Araki T, Holick MF, Alfonso BD, Charlap E, Romero CM, Rizk D, et al. Vitamin D intoxication with severe hypercalcemia due to manufacturing and labeling errors of two dietary supplements made in the United States. J Clin Endocrinol Metab 2011;96:3603-8. [Pubmed]
[67]
Lowe H, Cusano NE, Binkley N, Blaner WS, Bilezikian JP. Vitamin D toxicity due to a commonly available "over the counter" remedy from the Dominican Republic. J Clin Endocrinol Metab 2011;96:291-5. [Pubmed]
[68]
Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr 2008;88:582S-586S.
[69]
Finch JL, Brown AJ, Slatopolsky E. Differential effects of 1,25-dihydroxyvitamin D3 and 19-nor-1,25-dihydroxyvitamin D2 on calcium and phosphorus resorption in bone. J Am Soc Nephrol 1999;10:980-5. [Pubmed]
[70]
Balint E, Marshall CF, Sprague SM. Effect of vitamin D analogues paracalcitol and calcitriol on bone mineral in vitro. Am J Kidney Dis 2000;36:789-96. [Pubmed]
[71]
Nakane M, Fey TA, Dixon DB, Ma J, Brune ME, Li YC, et al. Differential effects of vitamin D analogs on bone formation and resorption. J Steroid Biochem Mol Biol 2006;98:72-7.
[72]
Sprague SM, Llach F, Amdahl M, Taccetta C, Batlle D. Paracalcitol versus calcitriol in the treatment of secondary hyperparathyroidism. Kidney Int 2003;63:1483-90. [Pubmed]
[73]
Coyne DW, Grieff M, Ahya SN, Giles K, Norwood K, Slatopolsky E. Differential effects of acute administration of 19-nor-1,25-dihydroxy-vitamin D2 and 1,25-dihydroxy-vitamin D3 on serum calcium and phosphorus in hemodialysis patients. Am J Kidney Dis 2002;40:1283-8. [Pubmed]
[74]
Cardus A, Panizo S, Parisi E, Fernandez E, Valdivielso JM. Differential effects of vitamin D analogs on vascular calcification. J Bone Miner Res 2007;22:860-6. [Pubmed]
[75]
Rodriguez M, Aguilera-Tejero E, Mendoza FJ, Guerrero F, López I. Effects of calcimimetics on extraskeletal calcifications in chronic kidney disease. Kidney Int Suppl 2008;(111):S50-4.
[76]
Wada M, Ishii H, Furuya Y, Fox J, Nemeth EF, Nagano N. NPS R-568 halts or reverses osteitis fibrosa in uremic rats. Kidney Int 1998;53:448-53. [Pubmed]
[77]
Henley C, Davis J, Miller G, Shatzen E, Cattley R, Li X, et al. The calcimimetic AMG 641 abrogates parathyroid hyperplasia, bone and vascular calcification abnormalities in uremic rats. Eur J Pharmacol 2009;616:306-13. [Pubmed]
[78]
Finch JL, Tokumoto M, Nakamura H, Yao W, Shahnazari M, Lane N, et al. Effect of paracalcitol and cinacalcet on serum phosphate, FGF-23, and bone in rats with chronic kidney disease. Am J Physiol Renal Physiol 2010;298:F1315-22.
[79]
Xue Y, Xiao Y, Liu J, Karaplis AC, Pollak MR, Brown EM, et al. The calcium-sensing receptor complements parathyroid hormone-induced bone turnover in discrete skeletal compartments in mice. Am J Physiol Endocrinol Metab 2012;302:E841-51. [Pubmed]
[80]
Wagner MS, Stracke S, Jehle PM, Keller F, Zellner D, Baylink DJ, et al. Evaluation of IGF system component levels and mitogenic activity of uremic serum on normal human osteoblasts. Nephron 2000;84:158-66. [Pubmed]
[81]
Disthabanchong S, Hassan H, McConkey CL, Martin KJ, Gonzalez EA. Regulation of PTH1 receptor expression by uremic ultrafiltrate in UMR 106-01 osteoblast-like cells. Kidney Int 2004;65:897-903. [Pubmed]
[82]
Steddon SJ, McIntyre CW, Schroeder NJ, Burrin JM, Cunningham J. Impaired release of interleukin-6 from human osteoblastic cells in the uraemic mileau. Nephrol Dial Transplant 2004;19:3078-83. [Pubmed]
[83]
Iwasaki Y, Yamato H, Nii-Kono T, Fujieda A, Uchida M, Hosokawa A, et al. Uremic toxin and bone metabolism. J Bone Miner Metab 2006;24:172-5. [Pubmed]
[84]
Goto S, Fujii H, Hamada Y, Yoshiya K, Fukagawa M. Association between indoxyl sulfate and skeletal resistance in hemodialysis patients. Ther Apher Dial 2010;14:417-23. [Pubmed]
[85]
Iwasaki Y, Yamato H, Nii-Kono T, Fujieda A, Uchida M, Hosokawa A, et al. Administration of oral charcoal adsorbent (AST-120) suppresses low-turnover bone progression in uraemic rats. Nephrol Dial Transplant 2006;21:2768-74. [Pubmed]
[86]
Sun CY, Chang SC, Wu MS. Suppression of klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int 2012;81:640-50. [Pubmed]
[87]
Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the klotho gene leads to a syndrome resembling ageing. Nature 1997;390:45-51. [Pubmed]
[88]
Feng JQ, Ye L, Schiavi S. Do osteocytes contribute to phosphate homeostasis? Curr Opin Nephrol Hypertens 2009;18:285-91. [Pubmed]
Download PDF
Idiomas
Nefrología (English Edition)
Article options
Tools
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?