array:21 [
  "pii" => "X2013251409003613"
  "issn" => "20132514"
  "doi" => "10.3265/Nefrologia.2009.29.5.5429.en.full"
  "estado" => "S300"
  "fechaPublicacion" => "2009-10-01"
  "documento" => "article"
  "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
  "subdocumento" => "fla"
  "cita" => "Nefrologia (English Version). 2009;29:382-91"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:2 [
    "total" => 6634
    "formatos" => array:3 [
      "EPUB" => 317
      "HTML" => 5597
      "PDF" => 720
    ]
  ]
  "Traduccion" => array:1 [
    "es" => array:17 [
      "pii" => "X0211699509003616"
      "issn" => "02116995"
      "doi" => "10.3265/Nefrologia.2009.29.5.5429.en.full"
      "estado" => "S300"
      "fechaPublicacion" => "2009-10-01"
      "documento" => "article"
      "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
      "subdocumento" => "fla"
      "cita" => "Nefrologia. 2009;29:382-91"
      "abierto" => array:3 [
        "ES" => true
        "ES2" => true
        "LATM" => true
      ]
      "gratuito" => true
      "lecturas" => array:2 [
        "total" => 10782
        "formatos" => array:3 [
          "EPUB" => 269
          "HTML" => 9928
          "PDF" => 585
        ]
      ]
      "es" => array:12 [
        "idiomaDefecto" => true
        "titulo" => "El factor de crecimiento de tejido conectivo (CTGF): factor clave en el inicio y la progresión del daño renal"
        "tienePdf" => "es"
        "tieneTextoCompleto" => "es"
        "tieneResumen" => array:2 [
          0 => "es"
          1 => "en"
        ]
        "paginas" => array:1 [
          0 => array:2 [
            "paginaInicial" => "382"
            "paginaFinal" => "391"
          ]
        ]
        "titulosAlternativos" => array:1 [
          "en" => array:1 [
            "titulo" => "Connective tissue growth factor (CTGF): a key factor in the onset and progression of kidney damage"
          ]
        ]
        "contieneResumen" => array:2 [
          "es" => true
          "en" => true
        ]
        "contieneTextoCompleto" => array:1 [
          "es" => true
        ]
        "contienePdf" => array:1 [
          "es" => true
        ]
        "resumenGrafico" => array:2 [
          "original" => 0
          "multimedia" => array:7 [
            "identificador" => "fig1"
            "etiqueta" => "Fig. 1"
            "tipo" => "MULTIMEDIAFIGURA"
            "mostrarFloat" => true
            "mostrarDisplay" => false
            "copyright" => "Elsevier España"
            "figura" => array:1 [
              0 => array:4 [
                "imagen" => "407527_fig1.jpg"
                "Alto" => 522
                "Ancho" => 518
                "Tamanyo" => 36731
              ]
            ]
          ]
        ]
        "autores" => array:1 [
          0 => array:2 [
            "autoresLista" => "E. Sánchez-López, R. Rodríguez Díez, J. Rodríguez Vita, S. Rayego Mateos, R. R. Rodríguez Díez, E. Rodríguez García, C. Lavoz Barria, S. Mezzano, R. Selgas, J. Egido, A. Ortiz, Marta Ruiz Ortega"
            "autores" => array:12 [
              0 => array:2 [
                "Iniciales" => "E."
                "apellidos" => "Sánchez-López"
              ]
              1 => array:2 [
                "Iniciales" => "R."
                "apellidos" => "Rodríguez Díez"
              ]
              2 => array:2 [
                "Iniciales" => "J."
                "apellidos" => "Rodríguez Vita"
              ]
              3 => array:2 [
                "Iniciales" => "S."
                "apellidos" => "Rayego Mateos"
              ]
              4 => array:2 [
                "Iniciales" => "R. R."
                "apellidos" => "Rodríguez Díez"
              ]
              5 => array:2 [
                "Iniciales" => "E."
                "apellidos" => "Rodríguez García"
              ]
              6 => array:2 [
                "Iniciales" => "C."
                "apellidos" => "Lavoz Barria"
              ]
              7 => array:2 [
                "Iniciales" => "S."
                "apellidos" => "Mezzano"
              ]
              8 => array:2 [
                "Iniciales" => "R."
                "apellidos" => "Selgas"
              ]
              9 => array:2 [
                "Iniciales" => "J."
                "apellidos" => "Egido"
              ]
              10 => array:2 [
                "Iniciales" => "A."
                "apellidos" => "Ortiz"
              ]
              11 => array:2 [
                "nombre" => "Marta"
                "apellidos" => "Ruiz Ortega"
              ]
            ]
          ]
        ]
      ]
      "idiomaDefecto" => "es"
      "Traduccion" => array:1 [
        "en" => array:9 [
          "pii" => "X2013251409003613"
          "doi" => "10.3265/Nefrologia.2009.29.5.5429.en.full"
          "estado" => "S300"
          "subdocumento" => ""
          "abierto" => array:3 [
            "ES" => true
            "ES2" => true
            "LATM" => true
          ]
          "gratuito" => true
          "lecturas" => array:1 [
            "total" => 0
          ]
          "idiomaDefecto" => "en"
          "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251409003613?idApp=UINPBA000064"
        ]
      ]
      "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699509003616?idApp=UINPBA000064"
      "url" => "/02116995/0000002900000005/v0_201502091404/X0211699509003616/v0_201502091404/es/main.assets"
    ]
  ]
  "itemSiguiente" => array:17 [
    "pii" => "X2013251409003605"
    "issn" => "20132514"
    "doi" => "10.3265/Nefrologia.2009.29.5.5400.en.full"
    "estado" => "S300"
    "fechaPublicacion" => "2009-10-01"
    "documento" => "article"
    "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
    "subdocumento" => "fla"
    "cita" => "Nefrologia (English Version). 2009;29:392-6"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:2 [
      "total" => 4959
      "formatos" => array:3 [
        "EPUB" => 251
        "HTML" => 4060
        "PDF" => 648
      ]
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "titulo" => "FGF23: a key player in mineral and bone disorder in CKD"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:2 [
        0 => "es"
        1 => "en"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "392"
          "paginaFinal" => "396"
        ]
      ]
      "contieneResumen" => array:2 [
        "es" => true
        "en" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:7 [
          "identificador" => "fig1"
          "etiqueta" => "Fig. 1"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "copyright" => "Elsevier España"
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "40818078_f1_pag394.jpg"
              "Alto" => 579
              "Ancho" => 825
              "Tamanyo" => 39056
            ]
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "H. Komaba, M. Fukagawa"
          "autores" => array:2 [
            0 => array:2 [
              "Iniciales" => "H."
              "apellidos" => "Komaba"
            ]
            1 => array:2 [
              "Iniciales" => "M."
              "apellidos" => "Fukagawa"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "en" => array:9 [
        "pii" => "X0211699509003608"
        "doi" => "10.3265/Nefrologia.2009.29.5.5400.en.full"
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "en"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699509003608?idApp=UINPBA000064"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251409003605?idApp=UINPBA000064"
    "url" => "/20132514/0000002900000005/v0_201502091625/X2013251409003605/v0_201502091625/en/main.assets"
  ]
  "itemAnterior" => array:17 [
    "pii" => "X2013251409003590"
    "issn" => "20132514"
    "doi" => "10.3265/Nefrologia.2009.29.5.5663.en.full"
    "estado" => "S300"
    "fechaPublicacion" => "2009-10-01"
    "documento" => "article"
    "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
    "subdocumento" => "fla"
    "cita" => "Nefrologia (English Version). 2009;29:379-81"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:2 [
      "total" => 3387
      "formatos" => array:3 [
        "EPUB" => 246
        "HTML" => 2704
        "PDF" => 437
      ]
    ]
    "en" => array:9 [
      "idiomaDefecto" => true
      "titulo" => "The failure to propose live-donor transplants is bad practice"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "379"
          "paginaFinal" => "381"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "No indicar el trasplante de vivo es una mala práctica"
        ]
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => " Organización Nacional de Trasplantes, M.O. Valentín, B. Domínguez-Gil, E. Martín Escobar, R. Matesanz"
          "autores" => array:5 [
            0 => array:1 [
              "apellidos" => "Organización Nacional de Trasplantes"
            ]
            1 => array:2 [
              "Iniciales" => "M.O."
              "apellidos" => "Valentín"
            ]
            2 => array:2 [
              "Iniciales" => "B."
              "apellidos" => "Domínguez-Gil"
            ]
            3 => array:2 [
              "Iniciales" => "E."
              "apellidos" => "Martín Escobar"
            ]
            4 => array:2 [
              "Iniciales" => "R."
              "apellidos" => "Matesanz"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "es" => array:9 [
        "pii" => "X0211699509003593"
        "doi" => "10.3265/Nefrologia.2009.29.5.5663.en.full"
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "es"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699509003593?idApp=UINPBA000064"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251409003590?idApp=UINPBA000064"
    "url" => "/20132514/0000002900000005/v0_201502091625/X2013251409003590/v0_201502091625/en/main.assets"
  ]
  "en" => array:15 [
    "idiomaDefecto" => true
    "titulo" => "Connective tissue growth factor (CTGF): a key factor in the onset and progression of kidney damage"
    "tieneTextoCompleto" => true
    "paginas" => array:1 [
      0 => array:2 [
        "paginaInicial" => "382"
        "paginaFinal" => "391"
      ]
    ]
    "autores" => array:1 [
      0 => array:3 [
        "autoresLista" => "E. Sánchez-López, R. Rodríguez Díez, J. Rodríguez Vita, S. Rayego Mateos, R. R. Rodríguez Díez, E. Rodríguez García, C. Lavoz Barria, S. Mezzano, R. Selgas, J. Egido, A. Ortiz, Marta Ruiz Ortega"
        "autores" => array:12 [
          0 => array:3 [
            "Iniciales" => "E."
            "apellidos" => "Sánchez-López"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
          1 => array:3 [
            "Iniciales" => "R."
            "apellidos" => "Rodr&#237;guez D&#237;ez"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
          2 => array:3 [
            "Iniciales" => "J."
            "apellidos" => "Rodr&#237;guez Vita"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
          3 => array:3 [
            "Iniciales" => "S."
            "apellidos" => "Rayego Mateos"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
          4 => array:3 [
            "Iniciales" => "R. R."
            "apellidos" => "Rodr&#237;guez D&#237;ez"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
          5 => array:3 [
            "Iniciales" => "E."
            "apellidos" => "Rodr&#237;guez Garc&#237;a"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
          6 => array:3 [
            "Iniciales" => "C."
            "apellidos" => "Lavoz Barria"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
          7 => array:3 [
            "Iniciales" => "S."
            "apellidos" => "Mezzano"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">b</span>"
                "identificador" => "affb"
              ]
            ]
          ]
          8 => array:3 [
            "Iniciales" => "R."
            "apellidos" => "Selgas"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">c</span>"
                "identificador" => "affc"
              ]
            ]
          ]
          9 => array:3 [
            "Iniciales" => "J."
            "apellidos" => "Egido"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">d</span>"
                "identificador" => "affd"
              ]
            ]
          ]
          10 => array:3 [
            "Iniciales" => "A."
            "apellidos" => "Ortiz"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">e</span>"
                "identificador" => "affe"
              ]
            ]
          ]
          11 => array:4 [
            "nombre" => "Marta"
            "apellidos" => "Ruiz Ortega"
            "email" => array:1 [
              0 => "mruizo&#64;fjd&#46;es"
            ]
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
        ]
        "afiliaciones" => array:5 [
          0 => array:3 [
            "entidad" => "Laboratorio de Biología celular en Enfermedades Renales, Universidad Autónoma de Madrid, Madrid,   "
            "etiqueta" => "<span class="elsevierStyleSup">a</span>"
            "identificador" => "affa"
          ]
          1 => array:3 [
            "entidad" => "División de Nefrología, Escuela de Medicina. Universidad Austral, Valdivia,  Chile, "
            "etiqueta" => "<span class="elsevierStyleSup">b</span>"
            "identificador" => "affb"
          ]
          2 => array:3 [
            "entidad" => "Servicio Nefrología, Hospital La Paz, Madrid,   "
            "etiqueta" => "<span class="elsevierStyleSup">c</span>"
            "identificador" => "affc"
          ]
          3 => array:3 [
            "entidad" => "Laboratorio de Investigación Renal, Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid,   "
            "etiqueta" => "<span class="elsevierStyleSup">d</span>"
            "identificador" => "affd"
          ]
          4 => array:3 [
            "entidad" => "Unidad de Diálisis, Fundación Jiménez Díaz, Madrid,   "
            "etiqueta" => "<span class="elsevierStyleSup">e</span>"
            "identificador" => "affe"
          ]
        ]
      ]
    ]
    "titulosAlternativos" => array:1 [
      "es" => array:1 [
        "titulo" => "El factor de crecimiento de tejido conectivo &#40;CTGF&#41;&#58; factor clave en el inicio y la progresi&#243;n del da&#241;o renal"
      ]
    ]
    "resumenGrafico" => array:2 [
      "original" => 0
      "multimedia" => array:7 [
        "identificador" => "fig1"
        "etiqueta" => "Fig. 1"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "copyright" => "Elsevier Espa&#241;a"
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "40718078_f1_pag384.jpg"
            "Alto" => 856
            "Ancho" => 822
            "Tamanyo" => 67327
          ]
        ]
      ]
    ]
    "textoCompleto" => "INTRODUCTION <br></br><br></br>Numerous diseases&#44; such as proliferative disorders and fibrotic lesions&#44; skin conditions&#44; atherosclerosis&#44; pulmonary fibrosis and multiple renal pathologies present high CTGF levels in tissue&#44; mainly in fibrotic areas&#46; <span class="elsevierStyleSup">1-5</span> Although CTGF has traditionally been considered a profibrotic factor&#44; it is a multi-function factor with biological activities that vary depending on the cell type&#46; These activities include regulating cellular apoptosis&#47;proliferation&#44; angiogenesis&#44; migration&#44; adhesion and fibrosis&#46; <span class="elsevierStyleSup">2&#44;3</span> In this study&#44; we reviewed CTGF&#191;s role focusing on its importance in renal disease&#46; <br></br><br></br>STRUCTURE <br></br><br></br>CTGF is a secretable cysteine-rich protein with a molecular weight of 38kDa&#44; which was identified in cultured endothelial cells from the umbilical cord vein&#46; <span class="elsevierStyleSup">6</span> CTGF&#44; also known as CCN2&#44; belongs to the CCN family of early response genes&#44; which is made up of five members&#58; Cyr61 &#40;cysteine-61 rich protein&#41;&#44; Nov &#40;nephroblastoma overexpressed gene&#41;&#44; WISP-1 &#40;Wnt-1 induced secreted protein 1&#41;&#44; WISP-2 and WISP-3&#46; <span class="elsevierStyleSup">1&#44;2&#44;7&#44;8</span> All members of this family are characterised by a high percentage of homology in their amino acid sequence&#44; which ranges between 50 and 90&#37;&#44; and they present 38 cysteine residues that are grouped in two segments &#40;22 in the N-terminal and 16 in the C-terminal regions&#41;&#46; This is typical of other growth factors such as the plateletderived growth factor &#40;PDGF&#41;&#44; the nerve growth factor and the transforming growth factor-&#946; &#40;TGF-&#946;&#41;&#46; <span class="elsevierStyleSup">3&#44;9</span><br></br><br></br>Proteins in this family carry a secretory signal peptide in the NH <span class="elsevierStyleInf">2</span>-terminal end and four preserved secretion domains or modules&#46; <span class="elsevierStyleSup">9</span> These domains are as follows&#58; 1&#41; insulin-like growth factor &#40;IGF&#41; binding domain with the <br></br>conserved binding sequence Gly-Cys-Gly-Cys-Cys-X-XCys located within the amino-terminal region for all&#160; GFbinding proteins&#59; <span class="elsevierStyleSup">10-12</span> Von Willebrand type C domain&#44; which participates in protein oligomerisation and <br></br>formation&#59; <span class="elsevierStyleSup">13</span> 3&#41; thrombospondin-1 domain&#44; implicated in binding soluble macromolecules to a matrix&#59; <span class="elsevierStyleSup">14</span> and 4&#41; Cterminal domain&#44; a dimerisation domain implicated in cell-surface binding&#44; which has mitogenic activity for <br></br>fibroblasts and is responsible for interaction with fibronectin&#46; <span class="elsevierStyleSup">15</span><br></br><br></br>REGULATION <br></br><br></br>Depending on the cell type&#44; a wide variety of factors and molecules is involved in regulating CTGF expression&#46; G-protein-coupled receptor agonists&#44; growth factors such as TGF-&#946;&#44; angiotensin II &#40;AngII&#41;&#44; bone morphogenetic protein &#40;BMP&#41;&#44; vascular endothelial growth factor &#40;VEGF&#41;&#44; IGF&#44; granulocyte&#47;macrophage colony stimulation factor &#40;GM-CSF&#41;&#44; interleukin-4 &#40;IL-4&#41;&#44; high levels of glucose&#44; hypoxia&#44; mechanical stress and oxidative stress cause a rapid increase in CTGF expression &#40;figure 1&#41;&#46; <span class="elsevierStyleSup">16-24</span> However&#44; other factors such as the tumour necrosis factor alpha &#40;TNF-&#945;&#41;&#44; interleukin-1&#191; &#40;IL-1&#946;&#41;&#44; cAMP and treatment with peroxysome proliferative activated receptor-&#947; &#40;PPAR-&#947;&#41; inhibit CTGF expression induced by TGF-&#946; and AngII in some cell types&#46; <span class="elsevierStyleSup">25-29</span> Various signal mechanisms have been related to increased CTGF&#46; These include the SMAD protein signalling pathway&#44; the reactive oxygen species&#44; <br></br>the small G protein RhoA&#44; protein kinase C&#44; Janus kinase &#40;JAK&#41;&#44; phosphatydilinosotol-3 kinase &#40;PI3K&#41; and the mitogen-activated protein kinase &#40;MAPK&#41; cascades&#46; <span class="elsevierStyleSup">30-33</span><br></br><br></br>Most of the studies that have been carried out have focussed on investigating TGF-&#946;-induced CTGF regulation&#46; A SMAD-binding element has been described in the CTGF promoter&#44; which is necessary for its induction by TGF-&#946;&#46; <span class="elsevierStyleSup">34</span> In proximal tubular epithelial cells and mesangial cells&#44; TGF-&#946; increases CTGF production in a process that is regulated by SMAD proteins and the Ras&#47;MEK&#47;ERK signalling cascade&#46; <span class="elsevierStyleSup">36&#44;37</span> However&#44; this process is mediated by Rho activation <span class="elsevierStyleSup">35</span> in renal fibroblasts&#46; The MAPK signalling cascade also plays an important role in regulating CTGF&#46; In hepatocytes&#44; TGF-&#946; induces CTGF expression and production by means of ERK1&#47;2&#44; <span class="elsevierStyleSup">38</span> while in lung fibroblasts the process is mainly mediated by the kinase JNK1&#47;2&#46; <span class="elsevierStyleSup">39</span> Studies performed by our group have focussed on the regulation caused by AngII&#46; In human tubular epithelial cells&#44; AngII induces CTGF production by activating MAPK &#40;ERK&#44; p38 and JNK&#41; and Rhoassociated protein kinase&#44; ROCK&#46; <span class="elsevierStyleSup">39</span> Rho involvement in CTGF regulation has been described for many cell types&#44; including lung fibroblasts and vascular smooth muscle cells&#46; <span class="elsevierStyleSup">34&#44;41</span> In the latter&#44; CTGF increases in response to AngII through other pathways such as ROS&#44; SMAD proteins and the kinases p38&#44; JNK1&#47;2&#44; ROCK&#44; PKC and PTK&#46; <span class="elsevierStyleSup">34&#44;42</span> In fibroblasts&#44; ERK1&#47;2 and JNK1&#47;2 inhibitors&#44; but not p38 inhibitors&#44; decrease AngII-stimulated CTGF expression <span class="elsevierStyleSup">43</span>&#46; Nevertheless&#44; in rat mesangial cells&#44; we find ROS and p38 production among the pathways that are involved in AngII-induced CTGF production&#46; <span class="elsevierStyleSup">29</span> Recent molecular studies have revealed the presence of a highly conserved NF-&#954;B binding sites in the proximal region of the CTGF promoter&#46; <span class="elsevierStyleSup">44</span> In mesangial cells&#44; we have observed that blocking NF-&#954;B decreases AngIIinduced CTGF production &#40;unpublished data&#41;&#44; which <br></br>suggests that activation of the NF-&#954;B transcription factor is involved in CTGF regulation in the kidney&#46; <br></br><br></br>SIGNAL TRANSDUCTION AND BIOLOGICAL FUNCTIONS OF CTGF <br></br><br></br>There is still no known receptor that is specific to CTGF&#46; However&#44; it has been stated that it interacts with various <br></br>proteins&#44; such as tyrosine-kinase and integrin&#44; which activate multiple signalling systems&#46; The first interaction studies revealed that there are CTGF-receptor complexes with a molecular weight of about 280kDa located in chondrocytes&#44; osteoblasts and endothelial cells&#46; <span class="elsevierStyleSup">45</span> In various cell types&#44; CTGF acts by binding different integrins&#44; such as integrin &#945;5&#946;1 or &#945;IIb&#946;3&#44; to heparan sulphate proteoglycan receptors -which activates various kinases&#44; such as focal adhesion kinase &#40;FAK&#41;&#44; ERK and Rac <span class="elsevierStyleSup">16&#44;47-49</span>- and to the macroglobulin receptor for the low-density lipoprotein receptor-related protein <span class="elsevierStyleSup">46</span> &#40;LPR&#41; &#40;figure 1&#41;&#46; It binds directly to BMP-4 and TGF-&#946; <span class="elsevierStyleSup">50</span> at its cysteine-rich domain&#44; interacts with fibronectin at its carboxyl-terminal domain&#44; and binds with IGF <span class="elsevierStyleSup">52</span> at its amino-terminal domain&#46; In human mesangial cells&#44; CTGF interacts with the dual receptor tyrosine-kinase system A &#40;RTK-A&#41; and p75 <span class="elsevierStyleInf">NTR</span> that participates in neurotrophin signal transduction in the nervous system &#40;figure 1&#41;&#46; Receptor tyrosine kinases bind numerous adapter proteins and activate multiple intracellular signalling pathways&#44; which would be in keeping with CTGF&#191;s multi-functional properties <span class="elsevierStyleSup">66</span> that include regulating and synthesising extracellular matrix <br></br>&#40;ECM&#41;&#44; <span class="elsevierStyleSup">4&#44;53&#44;54</span> endothelial cell migration and angiogenesis&#44; regulation of extracellular matrix&#44; mesothelial cell apoptosis&#44; <span class="elsevierStyleSup">56</span> survival of hepatic and mesangial cells <span class="elsevierStyleSup">57&#44;58</span> and fibroblast and chondrocyte proliferation and differentiation&#46; <span class="elsevierStyleSup">59&#44;60</span> In the kidney&#44; CTGF actively participates in fibrosis and epithelial mesenchymal transition &#40;EMT&#41; and&#44; as we described above&#44; in the inflammatory response&#46; We will presently give a more in-depth review of this topic&#46; <br></br><br></br>RELATION BETWEEN CTGF AND TGF-&#946; <br></br><br></br>Numerous in vivo examples demonstrate that TGF-&#946; participates in fibrotic processes&#46; It has been stated that CTGF and TGF-&#946; act in synergy to promote chronic fibrosis &#40;figure 2&#41;&#46; Subcutaneous co-injection of the two agents produces sustained and persistent fibrosis in mice&#46; Various experimental models&#44; such as those for unilateral ureter <br></br>obstruction&#44; nephritis due to anti-Thy1 antibodies&#44; diabetic glomerulosclerosis and AngII infusion <span class="elsevierStyleSup">61-63</span> show high levels of TGF-&#946; and CTGF during advanced stages of fibrosis&#44; indicating that these factors may contribute to the progression of kidney damage &#40;figure 3&#41;&#46; As stated previously&#44; CTGF binds directly to TGF-&#946; and increases its responses&#46; The mechanism is based on CTGF&#191;s chaperone function that increases TGF-&#946;&#191;s affinity for its different receptors&#44; creating more intense and prolonged responses&#46; <span class="elsevierStyleSup">64</span> This is not the only manner by which CTGF participates in TGF-&#946; responses&#46; Endogenous production of CTGF by TGF-&#946; involves a transcriptional suppression of SMAD-7 through induction of the TGF-&#223;-inducible early gene &#40;TIEG-1&#41; transcription factor&#46; By means of this mechanism&#44; TGF-&#946; blocks feedback regulation through SMAD-7&#44; perpetuating the activation of TGF-&#946; signalling&#46; <span class="elsevierStyleSup">32</span> This may be relevant for pathological conditions in which there is increased CTGF expression&#46; <br></br><br></br>Blocking TGF-&#946; activity with neutralising antibodies and&#47;or decorin&#44; which captures its active form&#44; has been shown to reduce fibrosis in experimental models for kidney damage&#46; However&#44; TGF-&#946; deficiency is lethal in the mouse&#59; it <br></br>develops a lesion repair defect&#44; with collagen deposit problems&#44; and presents a hyperinflammatory phenotype&#46; <span class="elsevierStyleSup">65</span><br></br>This suggests that it would be better to find a more specific therapeutic target for fibrotic diseases&#46; Mice that are <br></br>heterozygous for CTGF gene deletion have matrix organisation and synthesis defects during osteogenesis&#44; which results in seriously defective development of the skeletal component of the thoracic cage&#59; they die immediately after birth&#46; <span class="elsevierStyleSup">66</span> In addition&#44; CTGF is a mediator of fibrosis caused by TGF-&#946; and other factors that are involved in tissue damage&#44; and for that reason&#44; it may be a new&#44; more useful target for antifibrotic therapy&#46; <br></br><br></br>CTGF AS A MEDIATOR OF RENAL FIBROSIS AND EPITHELIAL-MESENCHYMAL TRANSITION <br></br><br></br>CTGF is not expressed in the healthy kidney&#44; but its expression is induced by human renal diseases&#44; including <br></br>glomerulonephritis&#44; glomerulosclerosis and diabetic nephropathy&#59; its expression levels are correlated with the <br></br>severity and progression of renal fibrosis&#46; <span class="elsevierStyleSup">5&#44;67-69</span> Our group used the model of kidney damage caused by the systemic infusion of AngII in rats to study the role CTGF plays in the onset and progression of in vivo kidney&#160; damage&#46; <br></br><br></br>The infusion of AngII rapidly induces the expression of CTGF&#44; which appears after three days and remains high for two weeks&#44; which was the end point of the study &#40;figure 3&#41;&#46; The appearance of CTGF&#44; which was observed in tubular epithelial and glomerular cells three days after infusion&#44; precedes the accumulation of ECM &#40;characterised by an increase in the fibronectin deposit&#41; which is seen after one week&#46; This indicates that CTGF may act as a mediator of renal fibrosis caused by AngII in vivo&#46; <span class="elsevierStyleSup">70</span> Through in vitro studies of rat mesangial cells&#44; we observed that blocking endogenous CTGF synthesis by using antisense oligonucleotides prevents AngII-induced fibronectin and collagen IV production&#46; <span class="elsevierStyleSup">43</span> These data show that CTGF is a mediator of AngII&#191;s fibrotic response in the kidney&#46; <br></br><br></br>Infusion of AngII also increases expression of TGF-&#946; in the kidney&#46; This factor is synthesised as an inactive protein <br></br>which is anchored to the membrane before being activated&#46; <span class="elsevierStyleSup">71</span> In cell cultures&#44; AngII increases mRNA expression of TGF-&#946;&#44; protein production and latent TGF-&#946; activation in a process that is mediated by thrombospondin&#46; <span class="elsevierStyleSup">72</span> Expression levels for TGF-&#946;&#44; but not thrombospondin-1&#44; appear to be higher after three days of AngII infusion&#46; <br></br>However&#44; active TGF-&#946; protein levels did not increase for two weeks&#46; <span class="elsevierStyleSup">73</span> This suggests that CTGF is induced before <br></br>TGF-&#946; and that it participates in the onset of fibrosis and remains high until advanced stages&#44; which contributes to <br></br>perpetuating kidney damage &#40;figure 3&#41;&#46; <br></br><br></br>Much evidence suggests that tubular epithelial cells under pathological conditions may suffer epithelialmesenchymal <br></br>transition &#40;EMT&#41; and become fibroblasts that produce extracellular matrix and contribute to renal fibrosis and the progression of the disease&#46; <span class="elsevierStyleSup">74</span> Different factors participate in this process&#44; notably CTGF&#44; TGF-&#946;&#44; fibroblast growth factor &#40;FGF&#41;&#44; IL-1&#44; EGF&#44; advanced glycosylation end products &#40;AGEs&#41; and AngII&#46; <span class="elsevierStyleSup">39&#44;73&#44;75-78</span> CTGF promotes the human tubular epithelial cell transdifferentiation to myofibroblasts in vitro and blocking CTGF results in inhibition of <br></br>transdifferentiation caused by TGF-&#946;&#44; by advanced glycosylation end products and AngII&#46; <span class="elsevierStyleSup">39</span> In the model of AngII-induced kidney damage&#44; the increase in CTGF expression remains present after two weeks&#46; This coincides with the onset of EMT&#44; which is characterised by an increase in the mesenchy marker &#945;-SMA expression and a decrease in epithelial marker E-cadherin <span class="elsevierStyleSup">73</span> &#40;figure 3&#41;&#46; Furthermore&#44; the increase in CTGF expression in the diabetic kidney is placed over the tubular epithelium in EMT sites&#46; <span class="elsevierStyleSup">75</span> These data have been confirmed in other experimental models such as 5&#47;6 nephrectomy in rats&#44; where increased CTGF was associated with overexpression of TGF-&#946; and PDGF in <br></br>interstitial fibroblast&#44; increased fibrosis and increased severity of kidney damage&#46; <span class="elsevierStyleSup">80</span> By citing these data&#44; we may conclude that CTGF is an inducer of fibrosis and EMT in vivo&#44; and that it mediates the actions of profibrotic factors such as TGF-&#946; and AngII&#46; Furthermore&#44; by interacting with TGF-&#946; it contributes to the perpetuation of fibrosis&#46; <br></br><br></br>CTGF PARTICIPATES IN THE RENAL INFLAMMATORY RESPONSE <br></br><br></br>By using the AngII infusion model&#44; we observed that a clear inflammatory response occurs in the kidney after three days&#44; <span class="elsevierStyleSup">81</span> that this response is characterised by the presence of infiltrating inflammatory cells &#40;T cells&#44; macrophages and granulocytes&#41; in tubulo-interstitial and glomerular areas &#40;figure 3&#41;&#46; In this animal study&#44; we also observed an increase in production of classic inflammatory mediators such as IL-6&#44; TNF-&#946; and MCP-1&#44; and in CTGF production in mesangial&#44; podocytes and tubuloepithelial cells&#44; <span class="elsevierStyleSup">70</span> which suggests that CTGF could be implicated in inflammatory response regulation in kidney damage situations&#46; Numerous in vitro studies in glomerular mesangial&#44; tubular epithelial&#44; pancreatic and hepatic cells have demonstrated that CTGF regulates inflammatory mediators&#46; <span class="elsevierStyleSup">58&#44;82&#44;83</span><br></br><br></br>Our group recently showed that systemic CTGF administration in mice caused an inflammatory response after 24 hours&#44; which was characterised by inflammatory cell recruitment &#40;macrophages and T cells&#41; in the interstitium&#44; production of chemotactic factors &#40;MCP-1 and RANTES&#41;&#44; proinflammatory cytokines &#40;INF-&#947;&#44; IL-6 and IL-4&#41;&#44; and activation of the NF-&#954;B transcription factor&#46; <span class="elsevierStyleSup">84</span> Treatment with parthenolide&#44; an NF-&#954;B inhibitor &#40;24 hours before the CTGF injection&#41; reduced the renal inflammatory response&#44; which shows that this factor is crucial for CTGF actions in the kidney&#46; <span class="elsevierStyleSup">84</span><br></br><br></br>THERAPEUTIC STRATEGIES AGAINST THE PROGRESSION OF KIDNEY DAMAGE <br></br><br></br>For patients with diabetic nephropathy&#44; it has been shown that high CTGF plasma levels can be considered early markers of progressing renal dysfunction in the diabetic kidney <span class="elsevierStyleSup">85</span>&#44; and they also predict the evolution of renal disease&#46; <span class="elsevierStyleSup">86</span> Studies of patients with IgA nephropathy have observed that high urine levels of CTGF and TGF-&#946; are <br></br>correlated with the degree of tubulo-interstitial damage&#46; <span class="elsevierStyleSup">87</span> On the other hand&#44; in patients with chronic cardiac damage&#44; plasma CTGF levels provide information on the appearance of myocardial fibrosis&#44; and can be considered a new marker for cardiac dysfunction&#46; <span class="elsevierStyleSup">88</span> These data suggest that CTGF may be a marker for fibrosis and damage progression in different diseases&#46; <br></br><br></br>Out of current clinical treatments for stopping kidney damage progression&#44; blocking AngII is one of the most widespread pharmacological options&#44; and has proven protective effects on organs&#46; <span class="elsevierStyleSup">89</span> Treatment with AT <span class="elsevierStyleInf">1</span> receptor antagonists and angiotensin conversing enzyme inhibitors <span class="elsevierStyleSup">89&#44;90</span> decreases renal CTGF expression and fibrosis in various experimental models for kidney damage&#46; <span class="elsevierStyleSup">70</span> However&#44; these drugs only slow the advance of the disease&#44; and a new therapeutic option is necessary if we are to reverse renal fibrosis and halt the EMT process&#46; <br></br><br></br>CTGF blockage is one of the most promising options amongst the new therapeutic approaches&#46; At present&#44; CTGF inhibition studies are directed toward the development of antisense oligonucleotides&#44; interference RNA or neutralising antibodies that block endogenic CTGF&#46; Experimental studies have shown that blocking CTGF with antisense oligonucleotides reduces the ccumulation of ECM in transgenic TGF-&#946; 1 mice with a nephrectomy <span class="elsevierStyleSup">91</span> and in mice with diabetic nephropathy&#46; <span class="elsevierStyleSup">92</span> In one hepatic fibrosis model&#44; treatment with interference RNA for CTGF via the intraportal vein attenuated hepatic fibrosis&#46; <span class="elsevierStyleSup">93</span> However&#44; CTGF blocking effects in the renal inflammatory response have not been studied yet&#44; and a more in-depth examination of this field is necessary&#46; All of these data suggest that <br></br>blocking endogenous CTGF could be a good alternative when treating renal pathologies associated with inflammation and fibrosis&#46; <br></br><br></br>FINAL CONCLUSION <br></br><br></br>This review reveals the immense complexity of the intracellular signalling pathways that regulate CTGF&#44; which vary according to the cell type and the induction factor&#46; It also refers to the presence of the activating and negative regulatory factors determining CTGF synthesis and the development of CTGF responses&#46; With regard to renal pathology&#44; CTGF is involved in all stages of kidney damage&#58; it participates in the inflammatory response &#40;by activating the NF-&#954;B factor that regulates chemokines and cytokines&#41; and promotes fibrosis and EMT&#44; thus showing itself as a good therapeutic target for the treatment of renal diseases&#46; <br></br><p class="elsevierStylePara"><a href="grande&#47;40718078&#95;f1&#95;pag384&#46;jpg" class="elsevierStyleCrossRefs"><img src="40718078_f1_pag384.jpg"></img></a></p><p class="elsevierStylePara">Figure 1&#46; </p><p class="elsevierStylePara"><a href="grande&#47;40718078&#95;f3&#95;pag386&#46;jpg" class="elsevierStyleCrossRefs"><img src="40718078_f3_pag386.jpg"></img></a></p><p class="elsevierStylePara">Figure 3&#46; </p><p class="elsevierStylePara"><a href="grande&#47;40718078&#95;f2&#95;pag385&#46;jpg" class="elsevierStyleCrossRefs"><img src="40718078_f2_pag385.jpg"></img></a></p><p class="elsevierStylePara">Figure 2&#46; </p>"
    "pdfFichero" => "P-E-S-A407-EN.pdf"
    "tienePdf" => true
    "PalabrasClave" => array:2 [
      "es" => array:4 [
        0 => array:4 [
          "clase" => "keyword"
          "titulo" => "Palabras clave"
          "identificador" => "xpalclavsec439649"
          "palabras" => array:1 [
            0 => "nefropat&#237;a"
          ]
        ]
        1 => array:4 [
          "clase" => "keyword"
          "titulo" => "Palabras clave"
          "identificador" => "xpalclavsec439651"
          "palabras" => array:1 [
            0 => "inflamaci&#243;n"
          ]
        ]
        2 => array:4 [
          "clase" => "keyword"
          "titulo" => "Palabras clave"
          "identificador" => "xpalclavsec439653"
          "palabras" => array:1 [
            0 => "fibrosis"
          ]
        ]
        3 => array:4 [
          "clase" => "keyword"
          "titulo" => "Palabras clave"
          "identificador" => "xpalclavsec439655"
          "palabras" => array:1 [
            0 => "CTGF"
          ]
        ]
      ]
      "en" => array:4 [
        0 => array:4 [
          "clase" => "keyword"
          "titulo" => "Keywords"
          "identificador" => "xpalclavsec439650"
          "palabras" => array:1 [
            0 => "kidney disease"
          ]
        ]
        1 => array:4 [
          "clase" => "keyword"
          "titulo" => "Keywords"
          "identificador" => "xpalclavsec439652"
          "palabras" => array:1 [
            0 => "inflammation"
          ]
        ]
        2 => array:4 [
          "clase" => "keyword"
          "titulo" => "Keywords"
          "identificador" => "xpalclavsec439654"
          "palabras" => array:1 [
            0 => "fibrosis"
          ]
        ]
        3 => array:4 [
          "clase" => "keyword"
          "titulo" => "Keywords"
          "identificador" => "xpalclavsec439656"
          "palabras" => array:1 [
            0 => "CTGF"
          ]
        ]
      ]
    ]
    "tieneResumen" => true
    "resumen" => array:2 [
      "es" => array:1 [
        "resumen" => "<p class="elsevierStylePara">El factor de crecimiento de tejido conectivo &#40;CTGF&#41; aparece aumentado en diferentes patolog&#237;as asociadas a fibrosis&#44; incluidas m&#250;ltiples enfermedades renales&#46; CTGF participa en procesos biol&#243;gicos&#44; como la regulaci&#243;n del ciclo celular&#44; migraci&#243;n&#44; adhesi&#243;n y angiog&#233;nesis&#46; Su expresi&#243;n est&#225; regulada por diversos factores implicados en el da&#241;o renal&#44; entre los que destacan el factor la angiotensina II&#44; el factor de crecimiento transformante-beta&#44; altas concentraciones de glucosa y situaciones de estres celular&#46; CTGF participa en el inicio y progresi&#243;n del da&#241;o renal al ser capaz de inducir una respuesta inflamatoria y promover la fibrosis&#44; se&#241;al&#225;ndole como una posible diana terap&#233;utica en el tratamiento de patolog&#237;as renales&#46; En este trabajo revisamos las principales acciones de CTGF en la patolog&#237;a renal&#44; los mecanismos intracelulares de actuaci&#243;n y las estrategias terap&#233;uticas para su bloqueo&#46;</p>"
      ]
      "en" => array:1 [
        "resumen" => "Connective tissue growth factor &#40;CTGF&#41; is increased in several pathologies associated with fibrosis&#44; including multiple renal diseases&#46; CTGF is involved in biological processes such as cell cycle regulation&#44; migration&#44; adhesion and angiogenesis&#46; Its expression is regulated by various factors involved in renal damage&#44; such as Angiotensin II&#44; transforming growth factor-beta&#44; high concentrations of glucose and cellular stress&#46; CTGF is involved in the initiation and progression of renal damage to be able to induce an inflammatory response and promote fibrosis&#44; identified as a potential therapeutic target in the treatment of kidney diseases&#46; In this paper we review the main actions of CTGF in renal disease&#44; the intracellular action mechanisms and therapeutic strategies for its blocking&#46;"
      ]
    ]
    "multimedia" => array:3 [
      0 => array:7 [
        "identificador" => "fig1"
        "etiqueta" => "Fig. 1"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "copyright" => "Elsevier Espa&#241;a"
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "40718078_f1_pag384.jpg"
            "Alto" => 856
            "Ancho" => 822
            "Tamanyo" => 67327
          ]
        ]
      ]
      1 => array:7 [
        "identificador" => "fig2"
        "etiqueta" => "Fig. 3"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "copyright" => "Elsevier Espa&#241;a"
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "40718078_f3_pag386.jpg"
            "Alto" => 352
            "Ancho" => 823
            "Tamanyo" => 38352
          ]
        ]
      ]
      2 => array:7 [
        "identificador" => "fig3"
        "etiqueta" => "Fig. 2"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "copyright" => "Elsevier Espa&#241;a"
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "40718078_f2_pag385.jpg"
            "Alto" => 568
            "Ancho" => 823
            "Tamanyo" => 34385
          ]
        ]
      ]
    ]
    "bibliografia" => array:2 [
      "titulo" => "Bibliography"
      "seccion" => array:1 [
        0 => array:1 [
          "bibliografiaReferencia" => array:7 [
            0 => array:3 [
              "identificador" => "bib1"
              "etiqueta" => "1"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "Gupta S, Clarkson MR, Duggan J, Brady HR. Connective tissue growth factor: potential role in glomerulosclerosis and tubulointerstitial fibrosis. Kidney Int 2000;58(4):1389-99. <a href="http://www.ncbi.nlm.nih.gov/pubmed/11012874" target="_blank">[Pubmed]</a>"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib2"
              "etiqueta" => "2"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "Lau LF, Lam SC. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res 1999;248(1):44-57. <a href="http://www.ncbi.nlm.nih.gov/pubmed/10094812" target="_blank">[Pubmed]</a>"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib3"
              "etiqueta" => "3"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "Perbal B. CCN proteins: multifunctional signalling regulators. Lancet 2004;363:62-4. <a href="http://www.ncbi.nlm.nih.gov/pubmed/14723997" target="_blank">[Pubmed]</a>"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib4"
              "etiqueta" => "4"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "Yokoi H, Mukoyama M, Sugawara A, Mori K, Nagae T, Makino H, et al. Role of connective tissue growth factor in fibronectin expression and tubulointerstitial\u{A0} fibrosis. Am J Physiol Renal Physiol 2002;282(5):F933-42. <a href="http://www.ncbi.nlm.nih.gov/pubmed/11934704" target="_blank">[Pubmed]</a>"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            4 => array:3 [
              "identificador" => "bib5"
              "etiqueta" => "5"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, et al. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int 1998;53:853-61. <a href="http://www.ncbi.nlm.nih.gov/pubmed/9551391" target="_blank">[Pubmed]</a>"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            5 => array:3 [
              "identificador" => "bib6"
              "etiqueta" => "6"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "Bradham DM, Igarashi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 1991;114:1285-94. <a href="http://www.ncbi.nlm.nih.gov/pubmed/1654338" target="_blank">[Pubmed]</a>"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            6 => array:3 [
              "identificador" => "bib7"
              "etiqueta" => "7"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "Brigstock DR. The connective tissue growth factor/cysteine ¿rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev 1999;20:189-206. <a href="http://www.ncbi.nlm.nih.gov/pubmed/10204117" target="_blank">[Pubmed]</a>"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/20132514/0000002900000005/v0_201502091625/X2013251409003613/v0_201502091625/en/main.assets"
  "Apartado" => array:4 [
    "identificador" => "35445"
    "tipo" => "SECCION"
    "en" => array:2 [
      "titulo" => "Short Reviews"
      "idiomaDefecto" => true
    ]
    "idiomaDefecto" => "en"
  ]
  "PDF" => "https://static.elsevier.es/multimedia/20132514/0000002900000005/v0_201502091625/X2013251409003613/v0_201502091625/en/P-E-S-A407-EN.pdf?idApp=UINPBA000064&text.app=https://revistanefrologia.com/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251409003613?idApp=UINPBA000064"
]
Share
Journal Information

Statistics

Follow this link to access the full text of the article

Connective tissue growth factor (CTGF): a key factor in the onset and progression of kidney damage
El factor de crecimiento de tejido conectivo (CTGF): factor clave en el inicio y la progresión del daño renal
E.. Sánchez-Lópeza, R.. Rodríguez Díeza, J.. Rodríguez Vitaa, S.. Rayego Mateosa, R. R.. Rodríguez Díeza, E.. Rodríguez Garcíaa, C.. Lavoz Barriaa, S.. Mezzanob, R.. Selgasc, J.. Egidod, A.. Ortize, Marta Ruiz Ortegaa
a Laboratorio de Biología celular en Enfermedades Renales, Universidad Autónoma de Madrid, Madrid,
b División de Nefrología, Escuela de Medicina. Universidad Austral, Valdivia, Chile,
c Servicio Nefrología, Hospital La Paz, Madrid,
d Laboratorio de Investigación Renal, Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid,
e Unidad de Diálisis, Fundación Jiménez Díaz, Madrid,
Read
12699
Times
was read the article
3163
Total PDF
9536
Total HTML
Share statistics
 array:21 [
  "pii" => "X2013251409003613"
  "issn" => "20132514"
  "doi" => "10.3265/Nefrologia.2009.29.5.5429.en.full"
  "estado" => "S300"
  "fechaPublicacion" => "2009-10-01"
  "documento" => "article"
  "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
  "subdocumento" => "fla"
  "cita" => "Nefrologia &#40;English Version&#41;. 2009;29:382-91"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:2 [
    "total" => 6634
    "formatos" => array:3 [
      "EPUB" => 317
      "HTML" => 5597
      "PDF" => 720
    ]
  ]
  "Traduccion" => array:1 [
    "es" => array:17 [
      "pii" => "X0211699509003616"
      "issn" => "02116995"
      "doi" => "10.3265/Nefrologia.2009.29.5.5429.en.full"
      "estado" => "S300"
      "fechaPublicacion" => "2009-10-01"
      "documento" => "article"
      "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
      "subdocumento" => "fla"
      "cita" => "Nefrologia. 2009;29:382-91"
      "abierto" => array:3 [
        "ES" => true
        "ES2" => true
        "LATM" => true
      ]
      "gratuito" => true
      "lecturas" => array:2 [
        "total" => 10782
        "formatos" => array:3 [
          "EPUB" => 269
          "HTML" => 9928
          "PDF" => 585
        ]
      ]
      "es" => array:12 [
        "idiomaDefecto" => true
        "titulo" => "El factor de crecimiento de tejido conectivo &#40;CTGF&#41;&#58; factor clave en el inicio y la progresi&#243;n del da&#241;o renal"
        "tienePdf" => "es"
        "tieneTextoCompleto" => "es"
        "tieneResumen" => array:2 [
          0 => "es"
          1 => "en"
        ]
        "paginas" => array:1 [
          0 => array:2 [
            "paginaInicial" => "382"
            "paginaFinal" => "391"
          ]
        ]
        "titulosAlternativos" => array:1 [
          "en" => array:1 [
            "titulo" => "Connective tissue growth factor &#40;CTGF&#41;&#58; a key factor in the onset and progression of kidney damage"
          ]
        ]
        "contieneResumen" => array:2 [
          "es" => true
          "en" => true
        ]
        "contieneTextoCompleto" => array:1 [
          "es" => true
        ]
        "contienePdf" => array:1 [
          "es" => true
        ]
        "resumenGrafico" => array:2 [
          "original" => 0
          "multimedia" => array:7 [
            "identificador" => "fig1"
            "etiqueta" => "Fig. 1"
            "tipo" => "MULTIMEDIAFIGURA"
            "mostrarFloat" => true
            "mostrarDisplay" => false
            "copyright" => "Elsevier Espa&#241;a"
            "figura" => array:1 [
              0 => array:4 [
                "imagen" => "407527_fig1.jpg"
                "Alto" => 522
                "Ancho" => 518
                "Tamanyo" => 36731
              ]
            ]
          ]
        ]
        "autores" => array:1 [
          0 => array:2 [
            "autoresLista" => "E. S&#225;nchez-L&#243;pez, R. Rodr&#237;guez D&#237;ez, J. Rodr&#237;guez Vita, S. Rayego Mateos, R. R. Rodr&#237;guez D&#237;ez, E. Rodr&#237;guez Garc&#237;a, C. Lavoz Barria, S. Mezzano, R. Selgas, J. Egido, A. Ortiz, Marta Ruiz Ortega"
            "autores" => array:12 [
              0 => array:2 [
                "Iniciales" => "E."
                "apellidos" => "S&#225;nchez-L&#243;pez"
              ]
              1 => array:2 [
                "Iniciales" => "R."
                "apellidos" => "Rodr&#237;guez D&#237;ez"
              ]
              2 => array:2 [
                "Iniciales" => "J."
                "apellidos" => "Rodr&#237;guez Vita"
              ]
              3 => array:2 [
                "Iniciales" => "S."
                "apellidos" => "Rayego Mateos"
              ]
              4 => array:2 [
                "Iniciales" => "R. R."
                "apellidos" => "Rodr&#237;guez D&#237;ez"
              ]
              5 => array:2 [
                "Iniciales" => "E."
                "apellidos" => "Rodr&#237;guez Garc&#237;a"
              ]
              6 => array:2 [
                "Iniciales" => "C."
                "apellidos" => "Lavoz Barria"
              ]
              7 => array:2 [
                "Iniciales" => "S."
                "apellidos" => "Mezzano"
              ]
              8 => array:2 [
                "Iniciales" => "R."
                "apellidos" => "Selgas"
              ]
              9 => array:2 [
                "Iniciales" => "J."
                "apellidos" => "Egido"
              ]
              10 => array:2 [
                "Iniciales" => "A."
                "apellidos" => "Ortiz"
              ]
              11 => array:2 [
                "nombre" => "Marta"
                "apellidos" => "Ruiz Ortega"
              ]
            ]
          ]
        ]
      ]
      "idiomaDefecto" => "es"
      "Traduccion" => array:1 [
        "en" => array:9 [
          "pii" => "X2013251409003613"
          "doi" => "10.3265/Nefrologia.2009.29.5.5429.en.full"
          "estado" => "S300"
          "subdocumento" => ""
          "abierto" => array:3 [
            "ES" => true
            "ES2" => true
            "LATM" => true
          ]
          "gratuito" => true
          "lecturas" => array:1 [
            "total" => 0
          ]
          "idiomaDefecto" => "en"
          "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251409003613?idApp=UINPBA000064"
        ]
      ]
      "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699509003616?idApp=UINPBA000064"
      "url" => "/02116995/0000002900000005/v0_201502091404/X0211699509003616/v0_201502091404/es/main.assets"
    ]
  ]
  "itemSiguiente" => array:17 [
    "pii" => "X2013251409003605"
    "issn" => "20132514"
    "doi" => "10.3265/Nefrologia.2009.29.5.5400.en.full"
    "estado" => "S300"
    "fechaPublicacion" => "2009-10-01"
    "documento" => "article"
    "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
    "subdocumento" => "fla"
    "cita" => "Nefrologia &#40;English Version&#41;. 2009;29:392-6"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:2 [
      "total" => 4959
      "formatos" => array:3 [
        "EPUB" => 251
        "HTML" => 4060
        "PDF" => 648
      ]
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "titulo" => "FGF23&#58; a key player in mineral and bone disorder in CKD"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:2 [
        0 => "es"
        1 => "en"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "392"
          "paginaFinal" => "396"
        ]
      ]
      "contieneResumen" => array:2 [
        "es" => true
        "en" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:7 [
          "identificador" => "fig1"
          "etiqueta" => "Fig. 1"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "copyright" => "Elsevier Espa&#241;a"
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "40818078_f1_pag394.jpg"
              "Alto" => 579
              "Ancho" => 825
              "Tamanyo" => 39056
            ]
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "H. Komaba, M. Fukagawa"
          "autores" => array:2 [
            0 => array:2 [
              "Iniciales" => "H."
              "apellidos" => "Komaba"
            ]
            1 => array:2 [
              "Iniciales" => "M."
              "apellidos" => "Fukagawa"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "en" => array:9 [
        "pii" => "X0211699509003608"
        "doi" => "10.3265/Nefrologia.2009.29.5.5400.en.full"
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "en"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699509003608?idApp=UINPBA000064"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251409003605?idApp=UINPBA000064"
    "url" => "/20132514/0000002900000005/v0_201502091625/X2013251409003605/v0_201502091625/en/main.assets"
  ]
  "itemAnterior" => array:17 [
    "pii" => "X2013251409003590"
    "issn" => "20132514"
    "doi" => "10.3265/Nefrologia.2009.29.5.5663.en.full"
    "estado" => "S300"
    "fechaPublicacion" => "2009-10-01"
    "documento" => "article"
    "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
    "subdocumento" => "fla"
    "cita" => "Nefrologia &#40;English Version&#41;. 2009;29:379-81"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:2 [
      "total" => 3387
      "formatos" => array:3 [
        "EPUB" => 246
        "HTML" => 2704
        "PDF" => 437
      ]
    ]
    "en" => array:9 [
      "idiomaDefecto" => true
      "titulo" => "The failure to propose live-donor transplants is bad practice"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "379"
          "paginaFinal" => "381"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "No indicar el trasplante de vivo es una mala pr&#225;ctica"
        ]
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => " Organizaci&#243;n Nacional de Trasplantes, M.O. Valent&#237;n, B. Dom&#237;nguez-Gil, E. Mart&#237;n Escobar, R. Matesanz"
          "autores" => array:5 [
            0 => array:1 [
              "apellidos" => "Organizaci&#243;n Nacional de Trasplantes"
            ]
            1 => array:2 [
              "Iniciales" => "M.O."
              "apellidos" => "Valent&#237;n"
            ]
            2 => array:2 [
              "Iniciales" => "B."
              "apellidos" => "Dom&#237;nguez-Gil"
            ]
            3 => array:2 [
              "Iniciales" => "E."
              "apellidos" => "Mart&#237;n Escobar"
            ]
            4 => array:2 [
              "Iniciales" => "R."
              "apellidos" => "Matesanz"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "es" => array:9 [
        "pii" => "X0211699509003593"
        "doi" => "10.3265/Nefrologia.2009.29.5.5663.en.full"
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "es"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699509003593?idApp=UINPBA000064"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251409003590?idApp=UINPBA000064"
    "url" => "/20132514/0000002900000005/v0_201502091625/X2013251409003590/v0_201502091625/en/main.assets"
  ]
  "en" => array:15 [
    "idiomaDefecto" => true
    "titulo" => "Connective tissue growth factor &#40;CTGF&#41;&#58; a key factor in the onset and progression of kidney damage"
    "tieneTextoCompleto" => true
    "paginas" => array:1 [
      0 => array:2 [
        "paginaInicial" => "382"
        "paginaFinal" => "391"
      ]
    ]
    "autores" => array:1 [
      0 => array:3 [
        "autoresLista" => "E. S&#225;nchez-L&#243;pez, R. Rodr&#237;guez D&#237;ez, J. Rodr&#237;guez Vita, S. Rayego Mateos, R. R. Rodr&#237;guez D&#237;ez, E. Rodr&#237;guez Garc&#237;a, C. Lavoz Barria, S. Mezzano, R. Selgas, J. Egido, A. Ortiz, Marta Ruiz Ortega"
        "autores" => array:12 [
          0 => array:3 [
            "Iniciales" => "E."
            "apellidos" => "S&#225;nchez-L&#243;pez"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
          1 => array:3 [
            "Iniciales" => "R."
            "apellidos" => "Rodr&#237;guez D&#237;ez"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
          2 => array:3 [
            "Iniciales" => "J."
            "apellidos" => "Rodr&#237;guez Vita"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
          3 => array:3 [
            "Iniciales" => "S."
            "apellidos" => "Rayego Mateos"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
          4 => array:3 [
            "Iniciales" => "R. R."
            "apellidos" => "Rodr&#237;guez D&#237;ez"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
          5 => array:3 [
            "Iniciales" => "E."
            "apellidos" => "Rodr&#237;guez Garc&#237;a"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
          6 => array:3 [
            "Iniciales" => "C."
            "apellidos" => "Lavoz Barria"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
          7 => array:3 [
            "Iniciales" => "S."
            "apellidos" => "Mezzano"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">b</span>"
                "identificador" => "affb"
              ]
            ]
          ]
          8 => array:3 [
            "Iniciales" => "R."
            "apellidos" => "Selgas"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">c</span>"
                "identificador" => "affc"
              ]
            ]
          ]
          9 => array:3 [
            "Iniciales" => "J."
            "apellidos" => "Egido"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">d</span>"
                "identificador" => "affd"
              ]
            ]
          ]
          10 => array:3 [
            "Iniciales" => "A."
            "apellidos" => "Ortiz"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">e</span>"
                "identificador" => "affe"
              ]
            ]
          ]
          11 => array:4 [
            "nombre" => "Marta"
            "apellidos" => "Ruiz Ortega"
            "email" => array:1 [
              0 => "mruizo&#64;fjd&#46;es"
            ]
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
        ]
        "afiliaciones" => array:5 [
          0 => array:3 [
            "entidad" => "Laboratorio de Biología celular en Enfermedades Renales, Universidad Autónoma de Madrid, Madrid,   "
            "etiqueta" => "<span class="elsevierStyleSup">a</span>"
            "identificador" => "affa"
          ]
          1 => array:3 [
            "entidad" => "División de Nefrología, Escuela de Medicina. Universidad Austral, Valdivia,  Chile, "
            "etiqueta" => "<span class="elsevierStyleSup">b</span>"
            "identificador" => "affb"
          ]
          2 => array:3 [
            "entidad" => "Servicio Nefrología, Hospital La Paz, Madrid,   "
            "etiqueta" => "<span class="elsevierStyleSup">c</span>"
            "identificador" => "affc"
          ]
          3 => array:3 [
            "entidad" => "Laboratorio de Investigación Renal, Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid,   "
            "etiqueta" => "<span class="elsevierStyleSup">d</span>"
            "identificador" => "affd"
          ]
          4 => array:3 [
            "entidad" => "Unidad de Diálisis, Fundación Jiménez Díaz, Madrid,   "
            "etiqueta" => "<span class="elsevierStyleSup">e</span>"
            "identificador" => "affe"
          ]
        ]
      ]
    ]
    "titulosAlternativos" => array:1 [
      "es" => array:1 [
        "titulo" => "El factor de crecimiento de tejido conectivo &#40;CTGF&#41;&#58; factor clave en el inicio y la progresi&#243;n del da&#241;o renal"
      ]
    ]
    "resumenGrafico" => array:2 [
      "original" => 0
      "multimedia" => array:7 [
        "identificador" => "fig1"
        "etiqueta" => "Fig. 1"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "copyright" => "Elsevier Espa&#241;a"
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "40718078_f1_pag384.jpg"
            "Alto" => 856
            "Ancho" => 822
            "Tamanyo" => 67327
          ]
        ]
      ]
    ]
    "textoCompleto" => "INTRODUCTION <br></br><br></br>Numerous diseases&#44; such as proliferative disorders and fibrotic lesions&#44; skin conditions&#44; atherosclerosis&#44; pulmonary fibrosis and multiple renal pathologies present high CTGF levels in tissue&#44; mainly in fibrotic areas&#46; <span class="elsevierStyleSup">1-5</span> Although CTGF has traditionally been considered a profibrotic factor&#44; it is a multi-function factor with biological activities that vary depending on the cell type&#46; These activities include regulating cellular apoptosis&#47;proliferation&#44; angiogenesis&#44; migration&#44; adhesion and fibrosis&#46; <span class="elsevierStyleSup">2&#44;3</span> In this study&#44; we reviewed CTGF&#191;s role focusing on its importance in renal disease&#46; <br></br><br></br>STRUCTURE <br></br><br></br>CTGF is a secretable cysteine-rich protein with a molecular weight of 38kDa&#44; which was identified in cultured endothelial cells from the umbilical cord vein&#46; <span class="elsevierStyleSup">6</span> CTGF&#44; also known as CCN2&#44; belongs to the CCN family of early response genes&#44; which is made up of five members&#58; Cyr61 &#40;cysteine-61 rich protein&#41;&#44; Nov &#40;nephroblastoma overexpressed gene&#41;&#44; WISP-1 &#40;Wnt-1 induced secreted protein 1&#41;&#44; WISP-2 and WISP-3&#46; <span class="elsevierStyleSup">1&#44;2&#44;7&#44;8</span> All members of this family are characterised by a high percentage of homology in their amino acid sequence&#44; which ranges between 50 and 90&#37;&#44; and they present 38 cysteine residues that are grouped in two segments &#40;22 in the N-terminal and 16 in the C-terminal regions&#41;&#46; This is typical of other growth factors such as the plateletderived growth factor &#40;PDGF&#41;&#44; the nerve growth factor and the transforming growth factor-&#946; &#40;TGF-&#946;&#41;&#46; <span class="elsevierStyleSup">3&#44;9</span><br></br><br></br>Proteins in this family carry a secretory signal peptide in the NH <span class="elsevierStyleInf">2</span>-terminal end and four preserved secretion domains or modules&#46; <span class="elsevierStyleSup">9</span> These domains are as follows&#58; 1&#41; insulin-like growth factor &#40;IGF&#41; binding domain with the <br></br>conserved binding sequence Gly-Cys-Gly-Cys-Cys-X-XCys located within the amino-terminal region for all&#160; GFbinding proteins&#59; <span class="elsevierStyleSup">10-12</span> Von Willebrand type C domain&#44; which participates in protein oligomerisation and <br></br>formation&#59; <span class="elsevierStyleSup">13</span> 3&#41; thrombospondin-1 domain&#44; implicated in binding soluble macromolecules to a matrix&#59; <span class="elsevierStyleSup">14</span> and 4&#41; Cterminal domain&#44; a dimerisation domain implicated in cell-surface binding&#44; which has mitogenic activity for <br></br>fibroblasts and is responsible for interaction with fibronectin&#46; <span class="elsevierStyleSup">15</span><br></br><br></br>REGULATION <br></br><br></br>Depending on the cell type&#44; a wide variety of factors and molecules is involved in regulating CTGF expression&#46; G-protein-coupled receptor agonists&#44; growth factors such as TGF-&#946;&#44; angiotensin II &#40;AngII&#41;&#44; bone morphogenetic protein &#40;BMP&#41;&#44; vascular endothelial growth factor &#40;VEGF&#41;&#44; IGF&#44; granulocyte&#47;macrophage colony stimulation factor &#40;GM-CSF&#41;&#44; interleukin-4 &#40;IL-4&#41;&#44; high levels of glucose&#44; hypoxia&#44; mechanical stress and oxidative stress cause a rapid increase in CTGF expression &#40;figure 1&#41;&#46; <span class="elsevierStyleSup">16-24</span> However&#44; other factors such as the tumour necrosis factor alpha &#40;TNF-&#945;&#41;&#44; interleukin-1&#191; &#40;IL-1&#946;&#41;&#44; cAMP and treatment with peroxysome proliferative activated receptor-&#947; &#40;PPAR-&#947;&#41; inhibit CTGF expression induced by TGF-&#946; and AngII in some cell types&#46; <span class="elsevierStyleSup">25-29</span> Various signal mechanisms have been related to increased CTGF&#46; These include the SMAD protein signalling pathway&#44; the reactive oxygen species&#44; <br></br>the small G protein RhoA&#44; protein kinase C&#44; Janus kinase &#40;JAK&#41;&#44; phosphatydilinosotol-3 kinase &#40;PI3K&#41; and the mitogen-activated protein kinase &#40;MAPK&#41; cascades&#46; <span class="elsevierStyleSup">30-33</span><br></br><br></br>Most of the studies that have been carried out have focussed on investigating TGF-&#946;-induced CTGF regulation&#46; A SMAD-binding element has been described in the CTGF promoter&#44; which is necessary for its induction by TGF-&#946;&#46; <span class="elsevierStyleSup">34</span> In proximal tubular epithelial cells and mesangial cells&#44; TGF-&#946; increases CTGF production in a process that is regulated by SMAD proteins and the Ras&#47;MEK&#47;ERK signalling cascade&#46; <span class="elsevierStyleSup">36&#44;37</span> However&#44; this process is mediated by Rho activation <span class="elsevierStyleSup">35</span> in renal fibroblasts&#46; The MAPK signalling cascade also plays an important role in regulating CTGF&#46; In hepatocytes&#44; TGF-&#946; induces CTGF expression and production by means of ERK1&#47;2&#44; <span class="elsevierStyleSup">38</span> while in lung fibroblasts the process is mainly mediated by the kinase JNK1&#47;2&#46; <span class="elsevierStyleSup">39</span> Studies performed by our group have focussed on the regulation caused by AngII&#46; In human tubular epithelial cells&#44; AngII induces CTGF production by activating MAPK &#40;ERK&#44; p38 and JNK&#41; and Rhoassociated protein kinase&#44; ROCK&#46; <span class="elsevierStyleSup">39</span> Rho involvement in CTGF regulation has been described for many cell types&#44; including lung fibroblasts and vascular smooth muscle cells&#46; <span class="elsevierStyleSup">34&#44;41</span> In the latter&#44; CTGF increases in response to AngII through other pathways such as ROS&#44; SMAD proteins and the kinases p38&#44; JNK1&#47;2&#44; ROCK&#44; PKC and PTK&#46; <span class="elsevierStyleSup">34&#44;42</span> In fibroblasts&#44; ERK1&#47;2 and JNK1&#47;2 inhibitors&#44; but not p38 inhibitors&#44; decrease AngII-stimulated CTGF expression <span class="elsevierStyleSup">43</span>&#46; Nevertheless&#44; in rat mesangial cells&#44; we find ROS and p38 production among the pathways that are involved in AngII-induced CTGF production&#46; <span class="elsevierStyleSup">29</span> Recent molecular studies have revealed the presence of a highly conserved NF-&#954;B binding sites in the proximal region of the CTGF promoter&#46; <span class="elsevierStyleSup">44</span> In mesangial cells&#44; we have observed that blocking NF-&#954;B decreases AngIIinduced CTGF production &#40;unpublished data&#41;&#44; which <br></br>suggests that activation of the NF-&#954;B transcription factor is involved in CTGF regulation in the kidney&#46; <br></br><br></br>SIGNAL TRANSDUCTION AND BIOLOGICAL FUNCTIONS OF CTGF <br></br><br></br>There is still no known receptor that is specific to CTGF&#46; However&#44; it has been stated that it interacts with various <br></br>proteins&#44; such as tyrosine-kinase and integrin&#44; which activate multiple signalling systems&#46; The first interaction studies revealed that there are CTGF-receptor complexes with a molecular weight of about 280kDa located in chondrocytes&#44; osteoblasts and endothelial cells&#46; <span class="elsevierStyleSup">45</span> In various cell types&#44; CTGF acts by binding different integrins&#44; such as integrin &#945;5&#946;1 or &#945;IIb&#946;3&#44; to heparan sulphate proteoglycan receptors -which activates various kinases&#44; such as focal adhesion kinase &#40;FAK&#41;&#44; ERK and Rac <span class="elsevierStyleSup">16&#44;47-49</span>- and to the macroglobulin receptor for the low-density lipoprotein receptor-related protein <span class="elsevierStyleSup">46</span> &#40;LPR&#41; &#40;figure 1&#41;&#46; It binds directly to BMP-4 and TGF-&#946; <span class="elsevierStyleSup">50</span> at its cysteine-rich domain&#44; interacts with fibronectin at its carboxyl-terminal domain&#44; and binds with IGF <span class="elsevierStyleSup">52</span> at its amino-terminal domain&#46; In human mesangial cells&#44; CTGF interacts with the dual receptor tyrosine-kinase system A &#40;RTK-A&#41; and p75 <span class="elsevierStyleInf">NTR</span> that participates in neurotrophin signal transduction in the nervous system &#40;figure 1&#41;&#46; Receptor tyrosine kinases bind numerous adapter proteins and activate multiple intracellular signalling pathways&#44; which would be in keeping with CTGF&#191;s multi-functional properties <span class="elsevierStyleSup">66</span> that include regulating and synthesising extracellular matrix <br></br>&#40;ECM&#41;&#44; <span class="elsevierStyleSup">4&#44;53&#44;54</span> endothelial cell migration and angiogenesis&#44; regulation of extracellular matrix&#44; mesothelial cell apoptosis&#44; <span class="elsevierStyleSup">56</span> survival of hepatic and mesangial cells <span class="elsevierStyleSup">57&#44;58</span> and fibroblast and chondrocyte proliferation and differentiation&#46; <span class="elsevierStyleSup">59&#44;60</span> In the kidney&#44; CTGF actively participates in fibrosis and epithelial mesenchymal transition &#40;EMT&#41; and&#44; as we described above&#44; in the inflammatory response&#46; We will presently give a more in-depth review of this topic&#46; <br></br><br></br>RELATION BETWEEN CTGF AND TGF-&#946; <br></br><br></br>Numerous in vivo examples demonstrate that TGF-&#946; participates in fibrotic processes&#46; It has been stated that CTGF and TGF-&#946; act in synergy to promote chronic fibrosis &#40;figure 2&#41;&#46; Subcutaneous co-injection of the two agents produces sustained and persistent fibrosis in mice&#46; Various experimental models&#44; such as those for unilateral ureter <br></br>obstruction&#44; nephritis due to anti-Thy1 antibodies&#44; diabetic glomerulosclerosis and AngII infusion <span class="elsevierStyleSup">61-63</span> show high levels of TGF-&#946; and CTGF during advanced stages of fibrosis&#44; indicating that these factors may contribute to the progression of kidney damage &#40;figure 3&#41;&#46; As stated previously&#44; CTGF binds directly to TGF-&#946; and increases its responses&#46; The mechanism is based on CTGF&#191;s chaperone function that increases TGF-&#946;&#191;s affinity for its different receptors&#44; creating more intense and prolonged responses&#46; <span class="elsevierStyleSup">64</span> This is not the only manner by which CTGF participates in TGF-&#946; responses&#46; Endogenous production of CTGF by TGF-&#946; involves a transcriptional suppression of SMAD-7 through induction of the TGF-&#223;-inducible early gene &#40;TIEG-1&#41; transcription factor&#46; By means of this mechanism&#44; TGF-&#946; blocks feedback regulation through SMAD-7&#44; perpetuating the activation of TGF-&#946; signalling&#46; <span class="elsevierStyleSup">32</span> This may be relevant for pathological conditions in which there is increased CTGF expression&#46; <br></br><br></br>Blocking TGF-&#946; activity with neutralising antibodies and&#47;or decorin&#44; which captures its active form&#44; has been shown to reduce fibrosis in experimental models for kidney damage&#46; However&#44; TGF-&#946; deficiency is lethal in the mouse&#59; it <br></br>develops a lesion repair defect&#44; with collagen deposit problems&#44; and presents a hyperinflammatory phenotype&#46; <span class="elsevierStyleSup">65</span><br></br>This suggests that it would be better to find a more specific therapeutic target for fibrotic diseases&#46; Mice that are <br></br>heterozygous for CTGF gene deletion have matrix organisation and synthesis defects during osteogenesis&#44; which results in seriously defective development of the skeletal component of the thoracic cage&#59; they die immediately after birth&#46; <span class="elsevierStyleSup">66</span> In addition&#44; CTGF is a mediator of fibrosis caused by TGF-&#946; and other factors that are involved in tissue damage&#44; and for that reason&#44; it may be a new&#44; more useful target for antifibrotic therapy&#46; <br></br><br></br>CTGF AS A MEDIATOR OF RENAL FIBROSIS AND EPITHELIAL-MESENCHYMAL TRANSITION <br></br><br></br>CTGF is not expressed in the healthy kidney&#44; but its expression is induced by human renal diseases&#44; including <br></br>glomerulonephritis&#44; glomerulosclerosis and diabetic nephropathy&#59; its expression levels are correlated with the <br></br>severity and progression of renal fibrosis&#46; <span class="elsevierStyleSup">5&#44;67-69</span> Our group used the model of kidney damage caused by the systemic infusion of AngII in rats to study the role CTGF plays in the onset and progression of in vivo kidney&#160; damage&#46; <br></br><br></br>The infusion of AngII rapidly induces the expression of CTGF&#44; which appears after three days and remains high for two weeks&#44; which was the end point of the study &#40;figure 3&#41;&#46; The appearance of CTGF&#44; which was observed in tubular epithelial and glomerular cells three days after infusion&#44; precedes the accumulation of ECM &#40;characterised by an increase in the fibronectin deposit&#41; which is seen after one week&#46; This indicates that CTGF may act as a mediator of renal fibrosis caused by AngII in vivo&#46; <span class="elsevierStyleSup">70</span> Through in vitro studies of rat mesangial cells&#44; we observed that blocking endogenous CTGF synthesis by using antisense oligonucleotides prevents AngII-induced fibronectin and collagen IV production&#46; <span class="elsevierStyleSup">43</span> These data show that CTGF is a mediator of AngII&#191;s fibrotic response in the kidney&#46; <br></br><br></br>Infusion of AngII also increases expression of TGF-&#946; in the kidney&#46; This factor is synthesised as an inactive protein <br></br>which is anchored to the membrane before being activated&#46; <span class="elsevierStyleSup">71</span> In cell cultures&#44; AngII increases mRNA expression of TGF-&#946;&#44; protein production and latent TGF-&#946; activation in a process that is mediated by thrombospondin&#46; <span class="elsevierStyleSup">72</span> Expression levels for TGF-&#946;&#44; but not thrombospondin-1&#44; appear to be higher after three days of AngII infusion&#46; <br></br>However&#44; active TGF-&#946; protein levels did not increase for two weeks&#46; <span class="elsevierStyleSup">73</span> This suggests that CTGF is induced before <br></br>TGF-&#946; and that it participates in the onset of fibrosis and remains high until advanced stages&#44; which contributes to <br></br>perpetuating kidney damage &#40;figure 3&#41;&#46; <br></br><br></br>Much evidence suggests that tubular epithelial cells under pathological conditions may suffer epithelialmesenchymal <br></br>transition &#40;EMT&#41; and become fibroblasts that produce extracellular matrix and contribute to renal fibrosis and the progression of the disease&#46; <span class="elsevierStyleSup">74</span> Different factors participate in this process&#44; notably CTGF&#44; TGF-&#946;&#44; fibroblast growth factor &#40;FGF&#41;&#44; IL-1&#44; EGF&#44; advanced glycosylation end products &#40;AGEs&#41; and AngII&#46; <span class="elsevierStyleSup">39&#44;73&#44;75-78</span> CTGF promotes the human tubular epithelial cell transdifferentiation to myofibroblasts in vitro and blocking CTGF results in inhibition of <br></br>transdifferentiation caused by TGF-&#946;&#44; by advanced glycosylation end products and AngII&#46; <span class="elsevierStyleSup">39</span> In the model of AngII-induced kidney damage&#44; the increase in CTGF expression remains present after two weeks&#46; This coincides with the onset of EMT&#44; which is characterised by an increase in the mesenchy marker &#945;-SMA expression and a decrease in epithelial marker E-cadherin <span class="elsevierStyleSup">73</span> &#40;figure 3&#41;&#46; Furthermore&#44; the increase in CTGF expression in the diabetic kidney is placed over the tubular epithelium in EMT sites&#46; <span class="elsevierStyleSup">75</span> These data have been confirmed in other experimental models such as 5&#47;6 nephrectomy in rats&#44; where increased CTGF was associated with overexpression of TGF-&#946; and PDGF in <br></br>interstitial fibroblast&#44; increased fibrosis and increased severity of kidney damage&#46; <span class="elsevierStyleSup">80</span> By citing these data&#44; we may conclude that CTGF is an inducer of fibrosis and EMT in vivo&#44; and that it mediates the actions of profibrotic factors such as TGF-&#946; and AngII&#46; Furthermore&#44; by interacting with TGF-&#946; it contributes to the perpetuation of fibrosis&#46; <br></br><br></br>CTGF PARTICIPATES IN THE RENAL INFLAMMATORY RESPONSE <br></br><br></br>By using the AngII infusion model&#44; we observed that a clear inflammatory response occurs in the kidney after three days&#44; <span class="elsevierStyleSup">81</span> that this response is characterised by the presence of infiltrating inflammatory cells &#40;T cells&#44; macrophages and granulocytes&#41; in tubulo-interstitial and glomerular areas &#40;figure 3&#41;&#46; In this animal study&#44; we also observed an increase in production of classic inflammatory mediators such as IL-6&#44; TNF-&#946; and MCP-1&#44; and in CTGF production in mesangial&#44; podocytes and tubuloepithelial cells&#44; <span class="elsevierStyleSup">70</span> which suggests that CTGF could be implicated in inflammatory response regulation in kidney damage situations&#46; Numerous in vitro studies in glomerular mesangial&#44; tubular epithelial&#44; pancreatic and hepatic cells have demonstrated that CTGF regulates inflammatory mediators&#46; <span class="elsevierStyleSup">58&#44;82&#44;83</span><br></br><br></br>Our group recently showed that systemic CTGF administration in mice caused an inflammatory response after 24 hours&#44; which was characterised by inflammatory cell recruitment &#40;macrophages and T cells&#41; in the interstitium&#44; production of chemotactic factors &#40;MCP-1 and RANTES&#41;&#44; proinflammatory cytokines &#40;INF-&#947;&#44; IL-6 and IL-4&#41;&#44; and activation of the NF-&#954;B transcription factor&#46; <span class="elsevierStyleSup">84</span> Treatment with parthenolide&#44; an NF-&#954;B inhibitor &#40;24 hours before the CTGF injection&#41; reduced the renal inflammatory response&#44; which shows that this factor is crucial for CTGF actions in the kidney&#46; <span class="elsevierStyleSup">84</span><br></br><br></br>THERAPEUTIC STRATEGIES AGAINST THE PROGRESSION OF KIDNEY DAMAGE <br></br><br></br>For patients with diabetic nephropathy&#44; it has been shown that high CTGF plasma levels can be considered early markers of progressing renal dysfunction in the diabetic kidney <span class="elsevierStyleSup">85</span>&#44; and they also predict the evolution of renal disease&#46; <span class="elsevierStyleSup">86</span> Studies of patients with IgA nephropathy have observed that high urine levels of CTGF and TGF-&#946; are <br></br>correlated with the degree of tubulo-interstitial damage&#46; <span class="elsevierStyleSup">87</span> On the other hand&#44; in patients with chronic cardiac damage&#44; plasma CTGF levels provide information on the appearance of myocardial fibrosis&#44; and can be considered a new marker for cardiac dysfunction&#46; <span class="elsevierStyleSup">88</span> These data suggest that CTGF may be a marker for fibrosis and damage progression in different diseases&#46; <br></br><br></br>Out of current clinical treatments for stopping kidney damage progression&#44; blocking AngII is one of the most widespread pharmacological options&#44; and has proven protective effects on organs&#46; <span class="elsevierStyleSup">89</span> Treatment with AT <span class="elsevierStyleInf">1</span> receptor antagonists and angiotensin conversing enzyme inhibitors <span class="elsevierStyleSup">89&#44;90</span> decreases renal CTGF expression and fibrosis in various experimental models for kidney damage&#46; <span class="elsevierStyleSup">70</span> However&#44; these drugs only slow the advance of the disease&#44; and a new therapeutic option is necessary if we are to reverse renal fibrosis and halt the EMT process&#46; <br></br><br></br>CTGF blockage is one of the most promising options amongst the new therapeutic approaches&#46; At present&#44; CTGF inhibition studies are directed toward the development of antisense oligonucleotides&#44; interference RNA or neutralising antibodies that block endogenic CTGF&#46; Experimental studies have shown that blocking CTGF with antisense oligonucleotides reduces the ccumulation of ECM in transgenic TGF-&#946; 1 mice with a nephrectomy <span class="elsevierStyleSup">91</span> and in mice with diabetic nephropathy&#46; <span class="elsevierStyleSup">92</span> In one hepatic fibrosis model&#44; treatment with interference RNA for CTGF via the intraportal vein attenuated hepatic fibrosis&#46; <span class="elsevierStyleSup">93</span> However&#44; CTGF blocking effects in the renal inflammatory response have not been studied yet&#44; and a more in-depth examination of this field is necessary&#46; All of these data suggest that <br></br>blocking endogenous CTGF could be a good alternative when treating renal pathologies associated with inflammation and fibrosis&#46; <br></br><br></br>FINAL CONCLUSION <br></br><br></br>This review reveals the immense complexity of the intracellular signalling pathways that regulate CTGF&#44; which vary according to the cell type and the induction factor&#46; It also refers to the presence of the activating and negative regulatory factors determining CTGF synthesis and the development of CTGF responses&#46; With regard to renal pathology&#44; CTGF is involved in all stages of kidney damage&#58; it participates in the inflammatory response &#40;by activating the NF-&#954;B factor that regulates chemokines and cytokines&#41; and promotes fibrosis and EMT&#44; thus showing itself as a good therapeutic target for the treatment of renal diseases&#46; <br></br><p class="elsevierStylePara"><a href="grande&#47;40718078&#95;f1&#95;pag384&#46;jpg" class="elsevierStyleCrossRefs"><img src="40718078_f1_pag384.jpg"></img></a></p><p class="elsevierStylePara">Figure 1&#46; </p><p class="elsevierStylePara"><a href="grande&#47;40718078&#95;f3&#95;pag386&#46;jpg" class="elsevierStyleCrossRefs"><img src="40718078_f3_pag386.jpg"></img></a></p><p class="elsevierStylePara">Figure 3&#46; </p><p class="elsevierStylePara"><a href="grande&#47;40718078&#95;f2&#95;pag385&#46;jpg" class="elsevierStyleCrossRefs"><img src="40718078_f2_pag385.jpg"></img></a></p><p class="elsevierStylePara">Figure 2&#46; </p>"
    "pdfFichero" => "P-E-S-A407-EN.pdf"
    "tienePdf" => true
    "PalabrasClave" => array:2 [
      "es" => array:4 [
        0 => array:4 [
          "clase" => "keyword"
          "titulo" => "Palabras clave"
          "identificador" => "xpalclavsec439649"
          "palabras" => array:1 [
            0 => "nefropat&#237;a"
          ]
        ]
        1 => array:4 [
          "clase" => "keyword"
          "titulo" => "Palabras clave"
          "identificador" => "xpalclavsec439651"
          "palabras" => array:1 [
            0 => "inflamaci&#243;n"
          ]
        ]
        2 => array:4 [
          "clase" => "keyword"
          "titulo" => "Palabras clave"
          "identificador" => "xpalclavsec439653"
          "palabras" => array:1 [
            0 => "fibrosis"
          ]
        ]
        3 => array:4 [
          "clase" => "keyword"
          "titulo" => "Palabras clave"
          "identificador" => "xpalclavsec439655"
          "palabras" => array:1 [
            0 => "CTGF"
          ]
        ]
      ]
      "en" => array:4 [
        0 => array:4 [
          "clase" => "keyword"
          "titulo" => "Keywords"
          "identificador" => "xpalclavsec439650"
          "palabras" => array:1 [
            0 => "kidney disease"
          ]
        ]
        1 => array:4 [
          "clase" => "keyword"
          "titulo" => "Keywords"
          "identificador" => "xpalclavsec439652"
          "palabras" => array:1 [
            0 => "inflammation"
          ]
        ]
        2 => array:4 [
          "clase" => "keyword"
          "titulo" => "Keywords"
          "identificador" => "xpalclavsec439654"
          "palabras" => array:1 [
            0 => "fibrosis"
          ]
        ]
        3 => array:4 [
          "clase" => "keyword"
          "titulo" => "Keywords"
          "identificador" => "xpalclavsec439656"
          "palabras" => array:1 [
            0 => "CTGF"
          ]
        ]
      ]
    ]
    "tieneResumen" => true
    "resumen" => array:2 [
      "es" => array:1 [
        "resumen" => "<p class="elsevierStylePara">El factor de crecimiento de tejido conectivo &#40;CTGF&#41; aparece aumentado en diferentes patolog&#237;as asociadas a fibrosis&#44; incluidas m&#250;ltiples enfermedades renales&#46; CTGF participa en procesos biol&#243;gicos&#44; como la regulaci&#243;n del ciclo celular&#44; migraci&#243;n&#44; adhesi&#243;n y angiog&#233;nesis&#46; Su expresi&#243;n est&#225; regulada por diversos factores implicados en el da&#241;o renal&#44; entre los que destacan el factor la angiotensina II&#44; el factor de crecimiento transformante-beta&#44; altas concentraciones de glucosa y situaciones de estres celular&#46; CTGF participa en el inicio y progresi&#243;n del da&#241;o renal al ser capaz de inducir una respuesta inflamatoria y promover la fibrosis&#44; se&#241;al&#225;ndole como una posible diana terap&#233;utica en el tratamiento de patolog&#237;as renales&#46; En este trabajo revisamos las principales acciones de CTGF en la patolog&#237;a renal&#44; los mecanismos intracelulares de actuaci&#243;n y las estrategias terap&#233;uticas para su bloqueo&#46;</p>"
      ]
      "en" => array:1 [
        "resumen" => "Connective tissue growth factor &#40;CTGF&#41; is increased in several pathologies associated with fibrosis&#44; including multiple renal diseases&#46; CTGF is involved in biological processes such as cell cycle regulation&#44; migration&#44; adhesion and angiogenesis&#46; Its expression is regulated by various factors involved in renal damage&#44; such as Angiotensin II&#44; transforming growth factor-beta&#44; high concentrations of glucose and cellular stress&#46; CTGF is involved in the initiation and progression of renal damage to be able to induce an inflammatory response and promote fibrosis&#44; identified as a potential therapeutic target in the treatment of kidney diseases&#46; In this paper we review the main actions of CTGF in renal disease&#44; the intracellular action mechanisms and therapeutic strategies for its blocking&#46;"
      ]
    ]
    "multimedia" => array:3 [
      0 => array:7 [
        "identificador" => "fig1"
        "etiqueta" => "Fig. 1"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "copyright" => "Elsevier Espa&#241;a"
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "40718078_f1_pag384.jpg"
            "Alto" => 856
            "Ancho" => 822
            "Tamanyo" => 67327
          ]
        ]
      ]
      1 => array:7 [
        "identificador" => "fig2"
        "etiqueta" => "Fig. 3"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "copyright" => "Elsevier Espa&#241;a"
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "40718078_f3_pag386.jpg"
            "Alto" => 352
            "Ancho" => 823
            "Tamanyo" => 38352
          ]
        ]
      ]
      2 => array:7 [
        "identificador" => "fig3"
        "etiqueta" => "Fig. 2"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "copyright" => "Elsevier Espa&#241;a"
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "40718078_f2_pag385.jpg"
            "Alto" => 568
            "Ancho" => 823
            "Tamanyo" => 34385
          ]
        ]
      ]
    ]
    "bibliografia" => array:2 [
      "titulo" => "Bibliography"
      "seccion" => array:1 [
        0 => array:1 [
          "bibliografiaReferencia" => array:7 [
            0 => array:3 [
              "identificador" => "bib1"
              "etiqueta" => "1"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "Gupta S, Clarkson MR, Duggan J, Brady HR. Connective tissue growth factor: potential role in glomerulosclerosis and tubulointerstitial fibrosis. Kidney Int 2000;58(4):1389-99. <a href="http://www.ncbi.nlm.nih.gov/pubmed/11012874" target="_blank">[Pubmed]</a>"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib2"
              "etiqueta" => "2"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "Lau LF, Lam SC. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res 1999;248(1):44-57. <a href="http://www.ncbi.nlm.nih.gov/pubmed/10094812" target="_blank">[Pubmed]</a>"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib3"
              "etiqueta" => "3"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "Perbal B. CCN proteins: multifunctional signalling regulators. Lancet 2004;363:62-4. <a href="http://www.ncbi.nlm.nih.gov/pubmed/14723997" target="_blank">[Pubmed]</a>"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib4"
              "etiqueta" => "4"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "Yokoi H, Mukoyama M, Sugawara A, Mori K, Nagae T, Makino H, et al. Role of connective tissue growth factor in fibronectin expression and tubulointerstitial\u{A0} fibrosis. Am J Physiol Renal Physiol 2002;282(5):F933-42. <a href="http://www.ncbi.nlm.nih.gov/pubmed/11934704" target="_blank">[Pubmed]</a>"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            4 => array:3 [
              "identificador" => "bib5"
              "etiqueta" => "5"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, et al. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int 1998;53:853-61. <a href="http://www.ncbi.nlm.nih.gov/pubmed/9551391" target="_blank">[Pubmed]</a>"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            5 => array:3 [
              "identificador" => "bib6"
              "etiqueta" => "6"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "Bradham DM, Igarashi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 1991;114:1285-94. <a href="http://www.ncbi.nlm.nih.gov/pubmed/1654338" target="_blank">[Pubmed]</a>"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            6 => array:3 [
              "identificador" => "bib7"
              "etiqueta" => "7"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "Brigstock DR. The connective tissue growth factor/cysteine ¿rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev 1999;20:189-206. <a href="http://www.ncbi.nlm.nih.gov/pubmed/10204117" target="_blank">[Pubmed]</a>"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/20132514/0000002900000005/v0_201502091625/X2013251409003613/v0_201502091625/en/main.assets"
  "Apartado" => array:4 [
    "identificador" => "35445"
    "tipo" => "SECCION"
    "en" => array:2 [
      "titulo" => "Short Reviews"
      "idiomaDefecto" => true
    ]
    "idiomaDefecto" => "en"
  ]
  "PDF" => "https://static.elsevier.es/multimedia/20132514/0000002900000005/v0_201502091625/X2013251409003613/v0_201502091625/en/P-E-S-A407-EN.pdf?idApp=UINPBA000064&text.app=https://revistanefrologia.com/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251409003613?idApp=UINPBA000064"
]
Article information
ISSN: 20132514
Original language: English
The statistics are updated each day
Year/Month Html Pdf Total
2024 November 5 5 10
2024 October 62 49 111
2024 September 57 80 137
2024 August 74 74 148
2024 July 47 38 85
2024 June 57 31 88
2024 May 73 31 104
2024 April 63 45 108
2024 March 54 30 84
2024 February 50 43 93
2024 January 27 36 63
2023 December 34 33 67
2023 November 54 49 103
2023 October 63 37 100
2023 September 34 44 78
2023 August 91 54 145
2023 July 64 65 129
2023 June 50 30 80
2023 May 79 47 126
2023 April 51 27 78
2023 March 41 29 70
2023 February 53 24 77
2023 January 56 27 83
2022 December 41 27 68
2022 November 57 31 88
2022 October 72 50 122
2022 September 74 47 121
2022 August 84 47 131
2022 July 54 58 112
2022 June 53 47 100
2022 May 85 60 145
2022 April 86 51 137
2022 March 89 63 152
2022 February 65 42 107
2022 January 75 31 106
2021 December 113 44 157
2021 November 66 36 102
2021 October 68 45 113
2021 September 96 442 538
2021 August 87 31 118
2021 July 91 46 137
2021 June 72 23 95
2021 May 79 27 106
2021 April 216 37 253
2021 March 107 22 129
2021 February 104 43 147
2021 January 79 17 96
2020 December 70 21 91
2020 November 61 6 67
2020 October 48 11 59
2020 September 62 8 70
2020 August 45 8 53
2020 July 71 8 79
2020 June 84 10 94
2020 May 76 19 95
2020 April 82 27 109
2020 March 63 16 79
2020 February 46 19 65
2020 January 74 27 101
2019 December 76 39 115
2019 November 60 34 94
2019 October 79 27 106
2019 September 71 20 91
2019 August 50 18 68
2019 July 65 20 85
2019 June 55 16 71
2019 May 67 20 87
2019 April 86 40 126
2019 March 69 19 88
2019 February 45 18 63
2019 January 60 18 78
2018 December 94 38 132
2018 November 117 17 134
2018 October 120 24 144
2018 September 102 11 113
2018 August 70 15 85
2018 July 66 8 74
2018 June 74 10 84
2018 May 64 15 79
2018 April 74 7 81
2018 March 109 16 125
2018 February 95 8 103
2018 January 96 14 110
2017 December 60 9 69
2017 November 53 12 65
2017 October 55 12 67
2017 September 88 8 96
2017 August 85 15 100
2017 July 63 9 72
2017 June 90 15 105
2017 May 86 10 96
2017 April 58 10 68
2017 March 84 13 97
2017 February 96 17 113
2017 January 60 15 75
2016 December 89 6 95
2016 November 129 10 139
2016 October 183 9 192
2016 September 250 11 261
2016 August 330 18 348
2016 July 236 17 253
2016 June 147 0 147
2016 May 150 0 150
2016 April 116 0 116
2016 March 118 0 118
2016 February 142 0 142
2016 January 116 0 116
2015 December 151 0 151
2015 November 111 0 111
2015 October 102 0 102
2015 September 92 0 92
2015 August 78 0 78
2015 July 83 0 83
2015 June 58 0 58
2015 May 74 0 74
2015 April 5 0 5
Show all

Follow this link to access the full text of the article

Idiomas
Nefrología (English Edition)
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?