array:21 [
  "pii" => "X2013251408004006"
  "issn" => "20132514"
  "doi" => " "
  "estado" => "S300"
  "fechaPublicacion" => "2008-10-01"
  "documento" => "article"
  "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
  "subdocumento" => "fla"
  "cita" => "Nefrologia (English Version). 2008;28:549-53"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:2 [
    "total" => 3397
    "formatos" => array:3 [
      "EPUB" => 274
      "HTML" => 2542
      "PDF" => 581
    ]
  ]
  "Traduccion" => array:1 [
    "es" => array:17 [
      "pii" => "X0211699508004009"
      "issn" => "02116995"
      "doi" => " "
      "estado" => "S300"
      "fechaPublicacion" => "2008-10-01"
      "documento" => "article"
      "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
      "subdocumento" => "fla"
      "cita" => "Nefrologia. 2008;28:549-53"
      "abierto" => array:3 [
        "ES" => true
        "ES2" => true
        "LATM" => true
      ]
      "gratuito" => true
      "lecturas" => array:2 [
        "total" => 9681
        "formatos" => array:3 [
          "EPUB" => 270
          "HTML" => 8937
          "PDF" => 474
        ]
      ]
      "es" => array:9 [
        "idiomaDefecto" => true
        "titulo" => "Trastornos hereditarios del magnesio revelan nuevas proteínas comprometidas en su transporte renal."
        "tieneTextoCompleto" => "es"
        "tieneResumen" => array:2 [
          0 => "es"
          1 => "en"
        ]
        "paginas" => array:1 [
          0 => array:2 [
            "paginaInicial" => "549"
            "paginaFinal" => "553"
          ]
        ]
        "titulosAlternativos" => array:1 [
          "en" => array:1 [
            "titulo" => "Hereditary disorders of magnesium reveal new proteins implicated in its renal transport"
          ]
        ]
        "contieneResumen" => array:2 [
          "es" => true
          "en" => true
        ]
        "contieneTextoCompleto" => array:1 [
          "es" => true
        ]
        "autores" => array:1 [
          0 => array:2 [
            "autoresLista" => "Armando Luis Negri"
            "autores" => array:1 [
              0 => array:2 [
                "nombre" => "Armando Luis"
                "apellidos" => "Negri"
              ]
            ]
          ]
        ]
      ]
      "idiomaDefecto" => "es"
      "Traduccion" => array:1 [
        "en" => array:9 [
          "pii" => "X2013251408004006"
          "doi" => " "
          "estado" => "S300"
          "subdocumento" => ""
          "abierto" => array:3 [
            "ES" => true
            "ES2" => true
            "LATM" => true
          ]
          "gratuito" => true
          "lecturas" => array:1 [
            "total" => 0
          ]
          "idiomaDefecto" => "en"
          "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251408004006?idApp=UINPBA000064"
        ]
      ]
      "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699508004009?idApp=UINPBA000064"
      "url" => "/02116995/0000002800000005/v0_201502091416/X0211699508004009/v0_201502091416/es/main.assets"
    ]
  ]
  "itemSiguiente" => array:17 [
    "pii" => "X2013251408004014"
    "issn" => "20132514"
    "doi" => " "
    "estado" => "S300"
    "fechaPublicacion" => "2008-10-01"
    "documento" => "article"
    "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
    "subdocumento" => "fla"
    "cita" => "Nefrologia (English Version). 2008;28:555-8"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:2 [
      "total" => 4155
      "formatos" => array:3 [
        "EPUB" => 301
        "HTML" => 3235
        "PDF" => 619
      ]
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "titulo" => "Lupus nephritis and antiphospholipid syndrome"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:2 [
        0 => "es"
        1 => "en"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "555"
          "paginaFinal" => "558"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "Nefritis lúpica y síndrome antifosfolípido"
        ]
      ]
      "contieneResumen" => array:2 [
        "es" => true
        "en" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "Paula García Ledesma, Ileana Medina, Purificación Gonzalez, Julia Blanco, Isabel Ubeda, Alberto Barrientos"
          "autores" => array:6 [
            0 => array:2 [
              "nombre" => "Paula"
              "apellidos" => "García Ledesma"
            ]
            1 => array:2 [
              "nombre" => "Ileana"
              "apellidos" => "Medina"
            ]
            2 => array:2 [
              "nombre" => "Purificación"
              "apellidos" => "Gonzalez"
            ]
            3 => array:2 [
              "nombre" => "Julia"
              "apellidos" => "Blanco"
            ]
            4 => array:2 [
              "nombre" => "Isabel"
              "apellidos" => "Ubeda"
            ]
            5 => array:2 [
              "nombre" => "Alberto"
              "apellidos" => "Barrientos"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "es" => array:9 [
        "pii" => "X0211699508004017"
        "doi" => " "
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "es"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699508004017?idApp=UINPBA000064"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251408004014?idApp=UINPBA000064"
    "url" => "/20132514/0000002800000005/v0_201502091635/X2013251408004014/v0_201502091635/en/main.assets"
  ]
  "itemAnterior" => array:17 [
    "pii" => "X2013251408003995"
    "issn" => "20132514"
    "doi" => " "
    "estado" => "S300"
    "fechaPublicacion" => "2008-10-01"
    "documento" => "article"
    "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
    "subdocumento" => "fla"
    "cita" => "Nefrologia (English Version). 2008;28:543-8"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:2 [
      "total" => 4595
      "formatos" => array:3 [
        "EPUB" => 300
        "HTML" => 3639
        "PDF" => 656
      ]
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "titulo" => "Tunneled catheters. Complications during insertion"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:2 [
        0 => "es"
        1 => "en"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "543"
          "paginaFinal" => "548"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "Catéteres tunelizados. Complicaciones en su inserción."
        ]
      ]
      "contieneResumen" => array:2 [
        "es" => true
        "en" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "Pilar Royo, Alicia García-Testal, Amparo Soldevila, Joaquín Panadero, Jose Miguel Cruz"
          "autores" => array:5 [
            0 => array:2 [
              "nombre" => "Pilar"
              "apellidos" => "Royo"
            ]
            1 => array:2 [
              "nombre" => "Alicia"
              "apellidos" => "García-Testal"
            ]
            2 => array:2 [
              "nombre" => "Amparo"
              "apellidos" => "Soldevila"
            ]
            3 => array:2 [
              "nombre" => "Joaquín"
              "apellidos" => "Panadero"
            ]
            4 => array:2 [
              "nombre" => "Jose Miguel"
              "apellidos" => "Cruz"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "es" => array:9 [
        "pii" => "X0211699508003998"
        "doi" => " "
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "es"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699508003998?idApp=UINPBA000064"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251408003995?idApp=UINPBA000064"
    "url" => "/20132514/0000002800000005/v0_201502091635/X2013251408003995/v0_201502091635/en/main.assets"
  ]
  "en" => array:12 [
    "idiomaDefecto" => true
    "titulo" => "Hereditary disorders of magnesium reveal new proteins implicated in its renal transport"
    "tieneTextoCompleto" => true
    "paginas" => array:1 [
      0 => array:2 [
        "paginaInicial" => "549"
        "paginaFinal" => "553"
      ]
    ]
    "autores" => array:1 [
      0 => array:3 [
        "autoresLista" => "Armando Luis Negri"
        "autores" => array:1 [
          0 => array:4 [
            "nombre" => "Armando Luis"
            "apellidos" => "Negri"
            "email" => array:1 [
              0 => "negri@casasco.com.ar"
            ]
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
        ]
        "afiliaciones" => array:1 [
          0 => array:3 [
            "entidad" => "Instituto de Investigaciones Metabólicas, Universidad del Salvador, Buenos Aires, Buenos Aires, Argentina, "
            "etiqueta" => "<span class="elsevierStyleSup">a</span>"
            "identificador" => "affa"
          ]
        ]
      ]
    ]
    "titulosAlternativos" => array:1 [
      "es" => array:1 [
        "titulo" => "Trastornos hereditarios del magnesio revelan nuevas prote&#237;nas comprometidas en su transporte renal&#46;"
      ]
    ]
    "textoCompleto" => "INTRODUCTION <br></br><br></br>Magnesium is the second most common intracellular ion and the fourth most abundant cation in the body&#46; This divalent cation plays an essential role in many metabolic processes such as protein and DNA synthesis and oxidative phosphorylation&#46; It is also a critical cofactor in a high number of enzymatic reactions&#44; and is involved in regulation of ion channels&#46;1 In normal subjects&#44; an acute change in serum magnesium levels affects&#160; parathyroid&#160; function&#58;&#160; decreased&#160; magnesium&#160; levels stimulate secretion&#44; while hypermagnesemia inhibits PTH release&#46;2&#44;3 <br></br><br></br>Magnesium&#160; deficiency&#160; therefore&#160; affects&#160; multiple&#160; body functions&#46; Symptoms of magnesium deficiency mainly consist of neuromuscular hyperexcitability ranging from latent to overt tetany and&#47;or seizures&#44;4 and from simple electrocardiographic changes&#160; including prolonged PR and QT intervals to complex cardiac arrhythmia&#46; Magnesium deficiency is a very common problem&#44; found in more than 10&#37; of hospitalized patients&#44; and may occur&#160; in up&#160; to 65&#37; of patients in intensive therapy units&#46;5 A complication seen in adult patients with&#160; chronic hypomagnesemia&#160; is&#160; chondrocalcinosis&#44; particularly in the knees&#44; that may lead to joint function impairment&#46;4 <br></br><br></br>Magnesium&#160; deficiency&#160; usually&#160; results&#160; from&#160; magnesium loss&#44; either through the gastrointestinal tract or the kidney&#46; Diseases causing acute or chronic diarrhea&#44; either or not associated&#160; to&#160; malabsorption&#44;&#160; commonly&#160; induce&#160; magnesium&#160; deficiency&#46;&#160; Diabetes&#160; is&#160; probably&#160; the&#160; most&#160; common&#160; systemic disease associated to hypomagnesemia&#46; Osmotic diuresis due to&#160; glycosuria&#160; results&#160; in&#160; renal&#160; loss&#160; of magnesium&#46; Different drugs&#160; such&#160; as&#160; diuretics&#44;&#160; aminoglycosides&#44;6 cyclosporin&#44;7 and cisplatin may also cause renal loss of magnesium&#46; <br></br><br></br>RENAL HANDLING OF MAGNESIUM&#160; HOMEOSTASIS <br></br><br></br>Magnesium&#160; plasma&#160; levels&#160; are&#160; regulated within&#160; a&#160; very&#160; narrow margin by changes in urinary excretion of this cation in response to intestinal absorption changes&#46; The kidney therefore&#160; plays&#160; an&#160; essential&#160; role&#160; in&#160; magnesium&#160; homeostasis&#46;4&#44;8 Only&#160; a&#160; small&#160; fraction&#160; of&#160; filtered magnesium&#160; is&#160; reabsorbed into the proximal tubule &#40;approximately 15&#37; of the filtered load&#41;&#46; Most&#160; renal&#160; reabsorption of magnesium occurs&#160; in&#160; the thick ascending limb of Henle&#191;s loop &#40;&#177; 70&#37;&#41; through a paracellular passive transport &#40;fig&#46; 1&#41; driven by an electric gradient&#46; Approximately 10&#37; of filtered magnesium is reabsorbed&#160; into&#160; the&#160; distal&#160; convoluted&#160; tubule&#160; &#40;DCT&#41;&#160; and&#160; the <br></br>connecting tubule by a process of transcellular active transport&#46;6&#44;8 Apical entry into DCT and connecting tubule cells is mediated by&#160; special magnesium-permeable channels called TRPM6&#160; &#40;transient receptor&#160; potential&#160; cation&#160; channel&#44;&#160; subfamily M&#44; member&#160; 6&#41;&#160; that&#160; are&#160; driven&#160; by&#160; a&#160; favorable&#160; transmembrane voltage gradient&#46;9 The mechanism of basolateral magnesium&#160; exit&#160; to&#160; the&#160; interstitium&#160; is&#160; unknown&#160; &#40;fig&#46;&#160; 2&#41;&#46; Magnesium should be extruded against an unfavorable electrochemical gradient&#44; which is most likely to occur through a Na&#43;&#47;Mg2&#43; exchanger and&#47;or a Mg2&#43;ATPase&#46; Finally&#44; 3&#37;-5&#37; of filtered magnesium is excreted in urine&#46; In hypomagnesemia&#160; states&#44;&#160; the kidney may&#160; reduce magnesium excretion&#160; to 0&#46;5&#37; of the filtered load&#44; while in hypermagnesemia it may excrete up&#160; to 80&#37; of&#160; the&#160; filtered&#160; load&#46; Despite&#160; the&#160; significant&#160; role&#160; play&#160; by&#160; transepithelial&#160; transport&#160; mechanisms&#160; in magnesium handling&#44; such mechanisms have not been fully elucidated yet&#46; <br></br><br></br>HEREDITARY DISORDERS OF MAGNESIUM HANDLING AND NEW PROTEINS IMPLICATED IN MAGNESIUM TRANSPORT <br></br><br></br>Hereditary primary hypomagnesemia is a rare group of heterogeneous&#160; disorders&#160; characterized&#160; by&#160; renal&#160; or&#160; intestinal magnesium loss with magnesium depletion frequently associated&#160; to&#160; impaired&#160; calcium&#160; excretion&#44;&#160; resulting&#160; in&#160; shared symptoms&#160; of&#160; tetany&#160; and&#160; generalized&#160; seizures&#46;&#160; Study&#160; of these disorders has&#160; allowed&#160; for&#160; a deeper understanding of the cellular and molecular mechanisms&#160; that play a significant role in renal magnesium reabsorption&#46; In recent years&#44; genetic&#160; studies&#160; on&#160; several&#160; of&#160; these&#160; hereditary&#160; disorders have&#160; revealed&#160; four new proteins&#160; that are&#160; involved&#160; in&#160; renal magnesium transport&#58; 1&#41; claudin-16&#44; 2&#41; the abovementioned magnesium&#160; epithelial&#160; channel&#44; TRPM6&#44; 3&#41;&#160; the gamma&#160; subunit&#160; of&#160; Na&#44;K-ATPase&#44;&#160; and&#160; 4&#41;&#160; pro-EGF&#160; &#40;pro-epidermal growth factor&#41;&#46; <br></br><br></br>Familial hypomagnesemia with hypercalciuria and nephrocalcinosis and mutations in tight junction proteins claudin-16 and -19 <br></br>In 1999&#44; a rare syndrome&#44; familial hypomagnesemia with hypercalciuria and nephrocalcinosis &#40;FHHNC&#41;&#44; was found to be caused by mutation of paracellin-1&#44; subsequently called claudin-16&#46;10 Tubular&#160; disorders&#160; and&#160; progression&#160; to&#160; renal&#160; insufficiency&#160; are&#160; usually&#160; resistant&#160; to magnesium&#160; replacement&#160; and hydrochlorothiazide treatment&#44; but magnesemia may improve with the advance of renal failure&#46; <br></br><br></br>As previously stated&#44; the bulk of magnesium tubular reabsorption occurs in the ascending thick limb of Henle&#191;s loop&#46; <br></br>This&#160; tubular&#160; segment&#160; consists&#160; of&#160; a&#160; watertight&#160; epithelium&#44; which is very important to generate the medullary hyperosmolarity gradient caused by sodium chloride absorption on which subsequent water reabsorption by the collecting tubule depends&#46;&#160; Sodium&#160; chloride&#160; reabsorption&#160; depends&#160; on&#160; the presence in the apical membrane of tubular cells in this region of an electron-neutral cotransporter carrying two chlorines&#44;&#160; one&#160; potassium&#44;&#160; and&#160; one&#160; sodium&#160; &#40;NKCC2&#41;&#44; which&#160; is the molecular&#160; target of&#160; the&#160; so-called&#160; loop diuretics&#160; such as furosemide&#46;&#160; Potassium&#160; must&#160; exit&#160; again&#160; into&#160; the&#160; tubular lumen&#160; through&#160; special&#160; channels&#160; called ROMK&#160; &#40;renal outer medullary K channels&#41;&#46; This generates and maintains a positive&#160; intratubular&#160; potential&#160; of&#160; 6&#160; to&#160; 12 mVolt&#44; which&#160; in&#160; turn drives paracellular reabsorption of divalent cations calcium and magnesium&#46;&#160;&#160; The&#160; finding&#160; that&#160; the&#160; paracellular&#160; protein <br></br>claudin-16&#44; expressed in the tight junctions of the ascending thick limb of Henle&#191;s loop&#44; was involved in magnesium reabsorption&#160; initially suggested&#160; that&#160; this protein could be&#160; the paracellular&#160; route&#160; for magnesium&#160; reabsorption&#46; When a series of claudin-16 mutations found in FHHNC patients were investigated by expressing them in renal cell lines&#44; most of these mutated proteins were found to be retained within the cell&#46; A few mutant proteins were directed&#44; as normally occurs&#44;&#160; towards&#160; tight&#160; junctions&#44;&#160; but&#160; these&#160; showed&#160; a&#160; reduced conductivity&#160; for magnesium&#46;11 It was&#160; therefore&#160; thought&#160; that claudin-16 mutations found in FHHNC affected its intracellular traffic or paracellular permeability to magnesium&#46; However&#44; other studies have shown that claudin-16 only has a low permeability to magnesium&#44; but has a high permeability to&#160; sodium&#44;&#160; and&#160; it was&#160; postulated&#160; that&#160; claudin-16&#160; formed&#160; a paracellular shunt for sodium in the interstitium to return to the tubular lumen&#44; contributing to the generation of the positive potential in the tubular lumen&#46;12 This hypothesis was recently evaluated using RNA interference&#160; technology&#160; to generate a mouse model with a great&#160; reduction&#160; in claudin-16 expression&#46;13 This mouse model showed urinary loss of magnesium&#160; and&#160; calcium&#44; bone mass&#160; reduction&#44;&#160; and&#160; subsequent <br></br>development&#160; of&#160; nephrocalcinosis&#160; as&#160; seen&#160; in&#160; patients&#160; with FHHNC&#46; A detailed&#160; analysis&#160; of&#160; the&#160; function&#160; of&#160; the&#160; ascending&#160; thick&#160; limb of Henle&#160; in&#160; these mice with no claudin-16 showed&#160; a&#160; decreased&#160; paracellular&#160; permeability&#160; to&#160; sodium with&#160; a&#160; strong&#160; reduction&#160; in&#160; the&#160; lumen-positive&#160; potential&#46; These data would&#160; show&#160; that claudin-16 may be part of&#160; the tight junction complex that selectively mediates back diffusion of sodium from interstitium to the lumen of the ascending&#160; thick&#160; limb of Henle&#44; generating&#160; the electropositive&#160; luminal potential&#160; that&#160; is critical&#160; for paracellular&#160; reabsorption of calcium and magnesium&#46; <br></br><br></br>In a study on patients with mutations resulting in a complete loss of function of both claudin-16 alleles&#44; they were found to be younger at symptom start as compared to subjects who had&#160; an&#160; allele&#160; providing&#160; a&#160; partial&#160; function&#46;14 In&#160; addition&#44;&#160; patients with a complete&#160; function&#160; loss had a&#160; faster&#160; impairment of glomerular filtration rate&#44; which caused that more than half of them required renal replacement therapy at 15 years of age&#44; As compared to only 20&#37; of those with residual allele function&#46; Existence of residual claudin-16 function could therefore delay progression to renal failure in patients with FHHNC&#46; <br></br><br></br>More recently&#44; nine families with severe hypomagnesemia with mutations in the gene encoding claudin-19 have been reported&#46;15 Claudin-19&#160; is another&#160; tight&#160; junction protein expressed in renal tubules and eyes&#46;16 This is why patients with claudin-19 mutations have ocular symptoms such as severe visual impairment&#44;&#160; macular&#160; coloboma&#44;&#160; horizontal&#160; nystagmus&#44;&#160; and marked myopia which do not occur in patients with claudin16 mutations&#46;&#160; In&#160; epithelial&#160; cells&#160; of&#160; pig&#160; kidneys&#44;&#160; claudin-19 acts as a chloride blocker&#44; while claudin-16 acts as a sodium channel&#46;&#160; Claudin-19&#160; mutations&#160; found&#160; in&#160; patients&#160; with FHHNC were unable&#160; to block permeability&#160; to chloride&#46; Co-expression of claudin-16 and -19 generates cation selectivity of the tight junction in a synergistic manner&#46;17 <br></br><br></br>Hypomagnesemia with secondary hypocalcemia and mutations of the magnesium channel TRPM6 <br></br>This&#160; rare&#160; autosomal&#160; recessive&#160; disease&#160; &#40;HSH&#59;&#160; OMIM 602014&#41;&#44;&#160; characterized&#160; by&#160; low&#160; serum&#160; magnesium&#160; levels with&#160; a&#160; high&#160; urinary&#160; fractional&#160; secretion&#160; of magnesium&#44;&#160; is caused&#160; by&#160; nonsense&#160; or&#160; antisense&#160; mutations&#160; in&#160; the&#160; apical magnesium&#160; channel&#44; TRPM6&#46;18 Subsequent&#160; studies&#160; showed TRPM6 to be a channel permeable to magnesium expressed in&#160; the&#160; luminal membrane of&#160; intestinal epithelium and DCT and&#160; connecting&#160; tubule&#46;19 TRPM6&#160; inactivating&#160; mutations cause&#160; an&#160; intestinal&#160; absorption&#160; impairment&#160; combined&#160; with renal loss of the cation&#46; <br></br><br></br>Gitelman syndrome is another hereditary disorder also causing changes in the epithelial magnesium channel&#46; This hereditary disorder is caused by function loss due to mutations in the gene encoding&#160; the Na-Cl cotransporter of&#160; the distal convoluted&#160; tubule&#160; &#40;NCCT&#41;&#46;&#160; It&#160; is&#160; characterize&#160; by&#160; hypokalemia&#44; metabolic&#160; alkalosis&#44;&#160; hypomagnesemia&#44;&#160; and&#160; hypocalciuria&#46; Hypomagnesemia&#160; developing&#160; during&#160; chronic&#160; hydrochlorothiazide treatment and in Na-Cl cotransporter knockout mice&#44; an animal model of Gitelman syndrome&#44; is due to downregulation of the epithelial magnesium channel&#44; TRPM6&#46; Downregulation of this channel may therefore represent a general mechanism&#160; involved&#160; in&#160; the&#160; pathogenesis&#160; of&#160; hypomagnesemia that is associated to inhibition or inactivation of the Na-Cl co-transporter&#46;20&#44;21 <br></br><br></br>Autosomal dominant renal hypomagnesemia with hypocalciuria and mutations in the Na&#44;K-ATPase subunit <br></br>In&#160; the&#160; kidney&#44; Na&#43;&#44; K&#43;-ATPase&#160; is&#160; an&#160; oligomer&#160; &#40;alpha&#47;beta&#47;gamma&#41; with equimolar amounts of the alpha and beta essential subunits and a small hydrophobic protein&#44; the gamma subunit&#46; FXYD2 or gamma subunit of Na&#44;K-ATPase belongs to the FXYD&#160; family&#160; of&#160; proteins&#44; which&#160; are&#160; tissue-specific Na&#44; K-ATPase&#160; modulators&#160; and&#160; include&#160; phospholemman&#160; &#40;or FXYD1&#41;&#160; and&#160; CHIF&#160; &#40;corticosteroid&#160; hormone-induced&#160; factor or FXYD4 &#41;&#46; Expression of protein FXYD2 or gamma subunit is essentially restricted to the kidney and has two main variants&#44;&#160; gamma&#160; a&#160; and&#160; gamma&#160; b&#46; While&#160; phospholemman&#160; and CHIF increase the apparent affinity of Na&#44; K-ATPase for intracellular Na&#40;&#43;&#41;&#44;&#160; the gamma subunit decreases sodium affinity&#46;22 The&#160; two variants of&#160; the gamma&#160; subunit affect&#160; the catalytic properties of the pump&#46; Both variants are coexpressed in the proximal tubule and medullary portion of the ascending thick limb of Henle&#191;s loop&#46; Distribution of both variants in all other&#160; tubular&#160; segments differs&#58; only&#160; the gamma&#160; a variant&#160; is present in macula densa and principal cells of the initial parts of the collecting tubule&#46; The gamma b variant is in the cortical portion&#160; of&#160; the&#160; ascending&#160; thick&#160; limb&#160; of&#160; Henle&#191;s&#160; loop&#46;23 The gamma subunit is an activator of Na&#43;&#44; K&#43;-ATPase in the external medullary zone of the kidney&#44; and its phosphorylation by&#160; PKA increases&#160; its&#160; capacity&#160; to&#160; stimulate&#160; hydrolysis&#160; of ATP&#46;24 <br></br><br></br>In a large Dutch family with autosomal dominant renal hypomagnesemia associated to hypercalciuria&#44; the disease locus was&#160; recently&#160; mapped&#160; to&#160; a&#160; 5&#46;6-cM&#160; region&#160; on&#160; chromosome 11q23&#46;25 After candidate&#160; screening&#44; a heterozygous mutation was identified in gene FXYD2&#44; encoding for the gamma subunit&#160; of&#160; Na&#40;&#43;&#41;&#44;K&#40;&#43;&#41;-ATPase&#44;&#160; cosegregating&#160; with&#160; patients from this family&#44; and which was not found in 132 control chromosomes&#46; The mutation leads to a G41R substitution&#44; introducing a charged amino acid residue into the predicted transmembrane&#160; region of&#160; the gamma subunit protein&#46; Expression studies&#160; in&#160; insect&#160; Sf9&#160; and&#160; COS-1&#160; cells&#160; showed&#160; the&#160; mutant gamma subunit to be misrouted and to accumulate in perinuclear structures&#46;&#160;&#160;&#160; In addition&#160; to misrouting of mutant G41R&#44; <br></br>Western&#160; blot&#160; analysis&#160; of Xenopus&#160; oocytes&#160; expressing&#160; either the wild or the mutant type of the gamma subunit showed that a post-translational change was lacking in the mutant gamma subunit&#46; Finally&#44; researchers studied two subjects who lacked a copy of the FXYD2 gene and found that the serum magnesium levels&#160; were&#160; within&#160; the&#160; normal&#160; range&#46;&#160; Retention&#160; of&#160; mutant gamma subunits in precise intracellular structures was therefore&#160; associated&#160; to&#160; an&#160; aberrant&#160; post-translational&#160; processing&#46; Thus&#44; the G41R mutation in protein FXYD2 causes dominant renal hypomagnesemia associated&#160; to hypocalciuria&#160; through a negative dominant mechanism&#46; Despite the foregoing&#44; the mechanism by which&#160; a mutation&#160; in&#160; a&#160; regulatory protein of&#160; the Na&#40;&#43;&#41;&#44;K&#40;&#43;&#41;-ATPase&#160; pump&#160; causes&#160; renal magnesium&#160; loss&#160; has not been elucidated yet&#46; <br></br><br></br>Isolated recessive renal hypomagnesemia and mutations in pro-EGF <br></br>This disease&#160; &#40;IRH&#41;&#160; is&#160; characterized by&#160; low magnesium&#160; levels&#44; normocalciuria&#44;&#160; and mental&#160; retardation with&#160; seizures&#46; Groenestetege et al studied&#160; two sisters born from asymptomatic inbred parents&#44; which suggested an autosomal recessive pattern&#46;26 Mutations&#160; in other genes previously&#160; identified with&#160; renal&#160; handling&#160; of magnesium were&#160; ruled&#160; out&#160; in&#160; these patients&#46; Genetic mapping allowed these authors to identify a critical gap junction with a LOD score of 2&#46;66 at 18&#46;4 cM on chromosome 4 between markers D4S2623 and D4S1575&#46; Among&#160; candidate&#160; genes&#160; located&#160; in&#160; that&#160; region&#44;&#160; the&#160; EGF &#40;epidermal growth factor&#41; gene was considered highly relevant&#46; EGF&#160; sequencing&#160; in&#160; affected&#160; subjects&#160; identified&#160; a&#160; homozygous mutation C3209T in exon 22&#160; that caused substitution&#160; of&#160; a&#160; highly&#160; conserved&#160; proline&#160; by&#160; a&#160; leucine&#160; in&#160; the cytoplasmic tail of pro-EGF &#40;P1070L&#41;&#46; The EGF gene consists of 24 exons encoding a long precursor protein anchored to the type I membrane that undergoes proteolytic cleavage to be converted into pro-EGF&#44; which eventually generates an acidic 53-amino&#160; acid hormone&#44; EGF&#46;27 EGF belongs&#160; to&#160; the EGF-like&#160; growth&#160; factor&#160; family&#44; whose members&#160; have&#160; profound effects upon cell differentiation&#44; and is a potent mitogen&#46;28 EGF is bound with great affinity to the EGF receptor &#40;EGFR&#41;&#46; EGF&#160; is very abundant&#160; in&#160; the DCT and appears&#160; to be&#160; secreted&#160; both&#160; to&#160; the&#160; apical&#160; and&#160; basolateral&#160; sides&#44; while EGFR mainly occurs in the basolateral membrane&#46; Groenestege et al26 showed that the P1070L mutation in pro-EGF appeared to affect EGF routing and basolateral secretion&#44; whereas apical release was not affected in Madin-Darby canine kidney&#160; cells&#160; &#40;MDCK&#41;&#46; Despite&#160; the&#160; fact&#160; that&#160; proline&#160; 1&#44;070 may be part of&#160; the PXXP motif causing basolateral sorting of&#160; pro-EGF&#44;&#160; expression&#160; of&#160; mutated&#160; pro-EGF&#160; &#40;P1070L&#41;&#160; in human embryonic kidney cells &#40;HEK&#41; may also affect EGF <br></br>formation&#44; suggesting&#160; the possibility&#160; that&#160; the mutation may affect pro-EGF processing&#46; <br></br><br></br>Regardless of whether the mutation found in patients with IRH&#160; causes mistargeting&#160; or&#160; impairment&#160; in&#160; pro-EGF&#160; processing&#44; Groenestege et al26 found&#160; that EGF markedly&#160; increases the activity of&#160; the magnesium channel TRPM6&#46; This&#160; led&#160; the authors to propose a physiological model in which a basal activity&#160; of&#160; basolateral&#160; activation&#160; of&#160; EGFR&#160; is&#160; required&#160; for TRPM6 activity and apical entry of magnesium&#46; This model is&#160; consistent&#160; with&#160; the&#160; hypomagnesemia&#160; seen&#160; in&#160; cancer&#160; patients&#160; treated with&#160; the&#160; anti-EGF&#160; antibody&#160; cetuximab&#46;29&#44;30 To support this concept&#44; the authors showed that cetuximab also antagonized stimulation of TRPM6 activity by EGF in cultured cells&#46; <br></br><br></br>PERSPECTIVE <br></br><br></br>After many&#160; decades&#160; of&#160; research&#44;&#160; in-depth&#160; understanding&#160; of control of magnesium homeostasis&#160; is&#160; still&#160; lacking&#46; Study of the different hereditary disorders of magnesium has demonstrated new proteins involved in its handling&#46; The most significant finding may perhaps be that EGF acts as an autocrine&#47;paracrine&#160; mangesiotropic&#160; factor&#44; which&#160; opens&#160; the&#160; way&#160; to&#160; a better understanding of active magnesium reabsorption in the distal tubule&#46; Pending questions include whether the effect of EGF&#160; is&#160; exerted&#160; through&#160; regulation&#160; of&#160; channel&#160; activity&#160; or whether it regulates its apical expression&#44; and which are its intracellular signaling pathways&#46; Understanding of all these mechanisms will open the door to a set of therapeutic objectives to be able to manipulate renal magnesium handling&#46; <br></br>"
    "pdfFichero" => "P-E-S-A362-EN.pdf"
    "tienePdf" => true
    "tieneResumen" => true
    "resumen" => array:2 [
      "es" => array:1 [
        "resumen" => "El magnesio es el segundo i&#243;n intracelular m&#225;s com&#250;n y el cuarto cati&#243;n m&#225;s abundante del cuerpo&#46; Este cati&#243;n bivalente tiene un rol fundamental en numerosos procesos metab&#243;licos como la s&#237;ntesis de prote&#237;nas y ADN y la fosforilaci&#243;n oxidativa&#59; es tambi&#233;n un cofactor cr&#237;tico de gran n&#250;mero de reacciones enzim&#225;ticas&#44; e interviene en la regulaci&#243;n de canales i&#243;nicos &#40;1&#41;&#46; En los sujetos normales&#44; un cambio agudo en la concentraci&#243;n s&#233;rica de magnesio afecta la funci&#243;n paratiroidea&#58; su ca&#237;da estimula la secreci&#243;n&#44; mientras que la hipermagnesemia inhibe la liberaci&#243;n de PTH &#40;2&#44;3&#41;&#46;"
      ]
      "en" => array:1 [
        "resumen" => "Magnesium is the second most common intracellular ion and the fourth most abundant cation in the body&#46; This divalent cation plays an essential role in many metabolic processes such as protein and DNA synthesis and oxidative phosphorylation&#46; It is also a critical cofactor in a high number of enzymatic reactions&#44; and is involved in regulation of ion channels&#46;1 In normal subjects&#44; an acute change in serum magnesium levels affects parathyroid function&#58; decreased magnesium levels stimulate secretion&#44; while hypermagnesemia inhibits PTH release&#46;2&#44;3"
      ]
    ]
    "bibliografia" => array:2 [
      "titulo" => "Bibliography"
      "seccion" => array:1 [
        0 => array:1 [
          "bibliografiaReferencia" => array:29 [
            0 => array:3 [
              "identificador" => "bib1"
              "etiqueta" => "1"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "1-Naderi AS, Reilly RF jr: Hereditary etiologies of hypomagnesemia. Nat Clin Pract Nephrol 2008; 4(2) 80-89."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib2"
              "etiqueta" => "2"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "2- Ferment O., Garnier P.E., Touitou Y. Comparison of the feedback effect of magnesium and calcium on parathyroid hormone secretion in man. J Endocrinol 1987; 113:117¿122."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib3"
              "etiqueta" => "3"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "3- Cholst I.N., et al. The influence of hypermagnesemia on serum calcium and parathyroid hormone levels in human subjects. N Engl J Med 1984; 310:1221¿1225."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib4"
              "etiqueta" => "4"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "4- Konrad M., Schlingmann K.P., Gudermann T. Insights into the molecular nature of magnesium homeostasis. Am. J Physiol Renal Physiol 2004; 286:F599¿F605."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            4 => array:3 [
              "identificador" => "bib5"
              "etiqueta" => "5"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "5- Agus Z.S. Hypomagnesemia. J Am Soc Nephrol 1999; 10:1616¿1622."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            5 => array:3 [
              "identificador" => "bib6"
              "etiqueta" => "6"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "6- Zaloga GP, Chernow B, Pock A, Wood B, Zaritsty A Zucker A: Hypomagnesemia is a common complication of aminoglycoside therapy. Surg Gynecol Obstet 1984; 158:561-565."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            6 => array:3 [
              "identificador" => "bib7"
              "etiqueta" => "7"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "7- June CH, Thompson CB, Lkennedy MS, Nims J, Thomas ED: Profound hypomagnesemia and renal magnesium wasting associated with the use of cyclosporine for bone marrow transplantation. Transplantation 1985; 39:620-624"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            7 => array:3 [
              "identificador" => "bib8"
              "etiqueta" => "8"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "8- Hoenderop J.G. and Bindels R.J. Epithelial Ca2+ and Mg2+ channels in health and disease. J Am Soc Nephrol 2005; 16:15¿26"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:1 [
                        "itemHostRev" => array:3 [
                          "pii" => "S0140673604161461"
                          "estado" => "S300"
                          "issn" => "01406736"
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            8 => array:3 [
              "identificador" => "bib9"
              "etiqueta" => "9"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "9- Voets T, Nilius B, Hoef S, Van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG: TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 2004; 279:19¿25."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            9 => array:3 [
              "identificador" => "bib10"
              "etiqueta" => "10"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "10- Simon DB, Lu Y, Choate KA, Velásquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodríguez Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 1999; 285(5424):103-6."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            10 => array:3 [
              "identificador" => "bib11"
              "etiqueta" => "11"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "11- Kausalya PJ, Amasheh S, Gunzel D, Wurps H, Muller D, Fromm M, Hunziker W: Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest 2006;116:878-91."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            11 => array:3 [
              "identificador" => "bib12"
              "etiqueta" => "12"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "12- Hou J, Paul DL, Goodenough DA. Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci 2005; 118:5109-18."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            12 => array:3 [
              "identificador" => "bib13"
              "etiqueta" => "13"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "13- Hou J, Shan Q, WangT, Gomes AS, Yan Q, Paul DL, Bleich M, Goodenough DA: Transgenic RNAi depletion of claudin 16 and the renal handling of magnesium.J Biol Chem 2007; 282:17114-22."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            13 => array:3 [
              "identificador" => "bib14"
              "etiqueta" => "14"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "14- Konrad M, Hou J, Weber S, Dotsch J, Kari JA, Seemann T et al: CLDN16 Genotype predicts renal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 19(1):171-81, 2008."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            14 => array:3 [
              "identificador" => "bib15"
              "etiqueta" => "15"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "15- Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A et al.: Mutations in the tight-junction gene claudin 19 (CLDN19) area associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79:949-957, 2006."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            15 => array:3 [
              "identificador" => "bib16"
              "etiqueta" => "16"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "16-Angelow S Renal localization and function of the tight junction protein claudin-19. Am J Physiol Renal Physiol 293:F166-F177, 2007."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            16 => array:3 [
              "identificador" => "bib17"
              "etiqueta" => "17"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "17-Hou J, Renigunta A, Konrad M, Gomes AS, Scheeberger EE , Paul DL, Waldegger S, Goodenough DA: Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest 118(2):619-28, 2008."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            17 => array:3 [
              "identificador" => "bib18"
              "etiqueta" => "18"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "18- Schlingmann K.P., et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 2002; 31:166¿170"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            18 => array:3 [
              "identificador" => "bib19"
              "etiqueta" => "19"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "19- Walder R.Y., et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 2002; 31:171¿174"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            19 => array:3 [
              "identificador" => "bib20"
              "etiqueta" => "20"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "20- Simon D.B., et al. Genetic heterogeneity of Bartter¿s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 1996; 14:152¿156."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            20 => array:3 [
              "identificador" => "bib21"
              "etiqueta" => "21"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "21- Nijenhuis T, Vallon V, van der Kemp A, Loffing J, Hoenderop J GJ, Bindels RJM: Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 2005; 115(6):1651-8"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            21 => array:3 [
              "identificador" => "bib22"
              "etiqueta" => "22"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "22- Geerinng K: Function of FXYD proteins, regulators of Na, K-ATPase. J Bioenerg Biomembr. 2005; 37(6):387-92."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            22 => array:3 [
              "identificador" => "bib23"
              "etiqueta" => "23"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "23-Farman N, Fay M, Cluseaud F: Cell-specific expression of three members of the FXYD family along the renal tubule. Ann N Y Acad Sci 986:4428-436, 2003."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            23 => array:3 [
              "identificador" => "bib24"
              "etiqueta" => "24"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "24- Cortes VF, Veiga-Lopes FE , Barrabin H, Alves-Ferreira M, Fontes CF: The gamma subunit of Na+, K+-ATPase: role on ATPase activity and regulatory phosphorylation by PKA. Int J Biochem Cell Biol. 2006; 38(11):1901-13.25- Meij IC, Koenderink JB, De Jong JC, De Pont JJ, Monnens LA, Van Den Heuvel LP, Knoers NV: Dominant isolated renal magnesium loss is caused by misrouting of the Na+,K+-ATPase gamma-subunit. Ann N Y Acad Sci. 2003; 986:437-43."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            24 => array:3 [
              "identificador" => "bib25"
              "etiqueta" => "25"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "26- Groenestege WM, Thébault S, van der Wijst J, van den Berg D, Janssen R, Teipar S, van den Heuvel LP, van Cutsem E, Hoenderop JG, Knoerss NV, Bindels RJ: .Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest. 2007; 117(8):2260-7."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            25 => array:3 [
              "identificador" => "bib26"
              "etiqueta" => "26"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "27- Bell GI: Human epidermal growth factor precursor: cDNA sequence, expression in vitro and gene organization. Nucleic Acids Res 1986; 14:8427-8446."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            26 => array:3 [
              "identificador" => "bib27"
              "etiqueta" => "27"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "28- Gray A, Dull TJ, and Ullrich A Nucleotide sequence of epidermal growth factor cDNA predicts a 128,000-molecular weight protein precursor. Nature 19833; 3033:722-725."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            27 => array:3 [
              "identificador" => "bib28"
              "etiqueta" => "28"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "29- Schrag D, Chunng KY, Flombaum C and Saltz L Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Ins 2005; 97:1221-1224."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            28 => array:3 [
              "identificador" => "bib29"
              "etiqueta" => "29"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "30- Tejpar S, Piessevaux H, Claes K, Piront P, Hoenderop JG, Verslype C, van Cutsem E: Magnesium wasting associated with epithermal-growth ¿factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncol 2007; 8:387-394."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/20132514/0000002800000005/v0_201502091635/X2013251408004006/v0_201502091635/en/main.assets"
  "Apartado" => null
  "PDF" => "https://static.elsevier.es/multimedia/20132514/0000002800000005/v0_201502091635/X2013251408004006/v0_201502091635/en/P-E-S-A362-EN.pdf?idApp=UINPBA000064&text.app=https://revistanefrologia.com/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251408004006?idApp=UINPBA000064"
]
Share
Journal Information

Statistics

Follow this link to access the full text of the article

Hereditary disorders of magnesium reveal new proteins implicated in its renal transport
Trastornos hereditarios del magnesio revelan nuevas proteínas comprometidas en su transporte renal.
Armando Luis Negria
a Instituto de Investigaciones Metabólicas, Universidad del Salvador, Buenos Aires, Buenos Aires, Argentina,
Read
8439
Times
was read the article
2208
Total PDF
6231
Total HTML
Share statistics
 array:21 [
  "pii" => "X2013251408004006"
  "issn" => "20132514"
  "doi" => " "
  "estado" => "S300"
  "fechaPublicacion" => "2008-10-01"
  "documento" => "article"
  "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
  "subdocumento" => "fla"
  "cita" => "Nefrologia &#40;English Version&#41;. 2008;28:549-53"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:2 [
    "total" => 3397
    "formatos" => array:3 [
      "EPUB" => 274
      "HTML" => 2542
      "PDF" => 581
    ]
  ]
  "Traduccion" => array:1 [
    "es" => array:17 [
      "pii" => "X0211699508004009"
      "issn" => "02116995"
      "doi" => " "
      "estado" => "S300"
      "fechaPublicacion" => "2008-10-01"
      "documento" => "article"
      "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
      "subdocumento" => "fla"
      "cita" => "Nefrologia. 2008;28:549-53"
      "abierto" => array:3 [
        "ES" => true
        "ES2" => true
        "LATM" => true
      ]
      "gratuito" => true
      "lecturas" => array:2 [
        "total" => 9681
        "formatos" => array:3 [
          "EPUB" => 270
          "HTML" => 8937
          "PDF" => 474
        ]
      ]
      "es" => array:9 [
        "idiomaDefecto" => true
        "titulo" => "Trastornos hereditarios del magnesio revelan nuevas prote&#237;nas comprometidas en su transporte renal&#46;"
        "tieneTextoCompleto" => "es"
        "tieneResumen" => array:2 [
          0 => "es"
          1 => "en"
        ]
        "paginas" => array:1 [
          0 => array:2 [
            "paginaInicial" => "549"
            "paginaFinal" => "553"
          ]
        ]
        "titulosAlternativos" => array:1 [
          "en" => array:1 [
            "titulo" => "Hereditary disorders of magnesium reveal new proteins implicated in its renal transport"
          ]
        ]
        "contieneResumen" => array:2 [
          "es" => true
          "en" => true
        ]
        "contieneTextoCompleto" => array:1 [
          "es" => true
        ]
        "autores" => array:1 [
          0 => array:2 [
            "autoresLista" => "Armando Luis Negri"
            "autores" => array:1 [
              0 => array:2 [
                "nombre" => "Armando Luis"
                "apellidos" => "Negri"
              ]
            ]
          ]
        ]
      ]
      "idiomaDefecto" => "es"
      "Traduccion" => array:1 [
        "en" => array:9 [
          "pii" => "X2013251408004006"
          "doi" => " "
          "estado" => "S300"
          "subdocumento" => ""
          "abierto" => array:3 [
            "ES" => true
            "ES2" => true
            "LATM" => true
          ]
          "gratuito" => true
          "lecturas" => array:1 [
            "total" => 0
          ]
          "idiomaDefecto" => "en"
          "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251408004006?idApp=UINPBA000064"
        ]
      ]
      "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699508004009?idApp=UINPBA000064"
      "url" => "/02116995/0000002800000005/v0_201502091416/X0211699508004009/v0_201502091416/es/main.assets"
    ]
  ]
  "itemSiguiente" => array:17 [
    "pii" => "X2013251408004014"
    "issn" => "20132514"
    "doi" => " "
    "estado" => "S300"
    "fechaPublicacion" => "2008-10-01"
    "documento" => "article"
    "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
    "subdocumento" => "fla"
    "cita" => "Nefrologia &#40;English Version&#41;. 2008;28:555-8"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:2 [
      "total" => 4155
      "formatos" => array:3 [
        "EPUB" => 301
        "HTML" => 3235
        "PDF" => 619
      ]
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "titulo" => "Lupus nephritis and antiphospholipid syndrome"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:2 [
        0 => "es"
        1 => "en"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "555"
          "paginaFinal" => "558"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "Nefritis l&#250;pica y s&#237;ndrome antifosfol&#237;pido"
        ]
      ]
      "contieneResumen" => array:2 [
        "es" => true
        "en" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "Paula Garc&#237;a Ledesma, Ileana Medina, Purificaci&#243;n Gonzalez, Julia Blanco, Isabel Ubeda, Alberto Barrientos"
          "autores" => array:6 [
            0 => array:2 [
              "nombre" => "Paula"
              "apellidos" => "Garc&#237;a Ledesma"
            ]
            1 => array:2 [
              "nombre" => "Ileana"
              "apellidos" => "Medina"
            ]
            2 => array:2 [
              "nombre" => "Purificaci&#243;n"
              "apellidos" => "Gonzalez"
            ]
            3 => array:2 [
              "nombre" => "Julia"
              "apellidos" => "Blanco"
            ]
            4 => array:2 [
              "nombre" => "Isabel"
              "apellidos" => "Ubeda"
            ]
            5 => array:2 [
              "nombre" => "Alberto"
              "apellidos" => "Barrientos"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "es" => array:9 [
        "pii" => "X0211699508004017"
        "doi" => " "
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "es"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699508004017?idApp=UINPBA000064"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251408004014?idApp=UINPBA000064"
    "url" => "/20132514/0000002800000005/v0_201502091635/X2013251408004014/v0_201502091635/en/main.assets"
  ]
  "itemAnterior" => array:17 [
    "pii" => "X2013251408003995"
    "issn" => "20132514"
    "doi" => " "
    "estado" => "S300"
    "fechaPublicacion" => "2008-10-01"
    "documento" => "article"
    "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/"
    "subdocumento" => "fla"
    "cita" => "Nefrologia &#40;English Version&#41;. 2008;28:543-8"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:2 [
      "total" => 4595
      "formatos" => array:3 [
        "EPUB" => 300
        "HTML" => 3639
        "PDF" => 656
      ]
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "titulo" => "Tunneled catheters&#46; Complications during insertion"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:2 [
        0 => "es"
        1 => "en"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "543"
          "paginaFinal" => "548"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "Cat&#233;teres tunelizados&#46; Complicaciones en su inserci&#243;n&#46;"
        ]
      ]
      "contieneResumen" => array:2 [
        "es" => true
        "en" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "Pilar Royo, Alicia Garc&#237;a-Testal, Amparo Soldevila, Joaqu&#237;n Panadero, Jose Miguel Cruz"
          "autores" => array:5 [
            0 => array:2 [
              "nombre" => "Pilar"
              "apellidos" => "Royo"
            ]
            1 => array:2 [
              "nombre" => "Alicia"
              "apellidos" => "Garc&#237;a-Testal"
            ]
            2 => array:2 [
              "nombre" => "Amparo"
              "apellidos" => "Soldevila"
            ]
            3 => array:2 [
              "nombre" => "Joaqu&#237;n"
              "apellidos" => "Panadero"
            ]
            4 => array:2 [
              "nombre" => "Jose Miguel"
              "apellidos" => "Cruz"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "es" => array:9 [
        "pii" => "X0211699508003998"
        "doi" => " "
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "es"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0211699508003998?idApp=UINPBA000064"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251408003995?idApp=UINPBA000064"
    "url" => "/20132514/0000002800000005/v0_201502091635/X2013251408003995/v0_201502091635/en/main.assets"
  ]
  "en" => array:12 [
    "idiomaDefecto" => true
    "titulo" => "Hereditary disorders of magnesium reveal new proteins implicated in its renal transport"
    "tieneTextoCompleto" => true
    "paginas" => array:1 [
      0 => array:2 [
        "paginaInicial" => "549"
        "paginaFinal" => "553"
      ]
    ]
    "autores" => array:1 [
      0 => array:3 [
        "autoresLista" => "Armando Luis Negri"
        "autores" => array:1 [
          0 => array:4 [
            "nombre" => "Armando Luis"
            "apellidos" => "Negri"
            "email" => array:1 [
              0 => "negri&#64;casasco&#46;com&#46;ar"
            ]
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "affa"
              ]
            ]
          ]
        ]
        "afiliaciones" => array:1 [
          0 => array:3 [
            "entidad" => "Instituto de Investigaciones Metabólicas, Universidad del Salvador, Buenos Aires, Buenos Aires, Argentina, "
            "etiqueta" => "<span class="elsevierStyleSup">a</span>"
            "identificador" => "affa"
          ]
        ]
      ]
    ]
    "titulosAlternativos" => array:1 [
      "es" => array:1 [
        "titulo" => "Trastornos hereditarios del magnesio revelan nuevas prote&#237;nas comprometidas en su transporte renal&#46;"
      ]
    ]
    "textoCompleto" => "INTRODUCTION <br></br><br></br>Magnesium is the second most common intracellular ion and the fourth most abundant cation in the body&#46; This divalent cation plays an essential role in many metabolic processes such as protein and DNA synthesis and oxidative phosphorylation&#46; It is also a critical cofactor in a high number of enzymatic reactions&#44; and is involved in regulation of ion channels&#46;1 In normal subjects&#44; an acute change in serum magnesium levels affects&#160; parathyroid&#160; function&#58;&#160; decreased&#160; magnesium&#160; levels stimulate secretion&#44; while hypermagnesemia inhibits PTH release&#46;2&#44;3 <br></br><br></br>Magnesium&#160; deficiency&#160; therefore&#160; affects&#160; multiple&#160; body functions&#46; Symptoms of magnesium deficiency mainly consist of neuromuscular hyperexcitability ranging from latent to overt tetany and&#47;or seizures&#44;4 and from simple electrocardiographic changes&#160; including prolonged PR and QT intervals to complex cardiac arrhythmia&#46; Magnesium deficiency is a very common problem&#44; found in more than 10&#37; of hospitalized patients&#44; and may occur&#160; in up&#160; to 65&#37; of patients in intensive therapy units&#46;5 A complication seen in adult patients with&#160; chronic hypomagnesemia&#160; is&#160; chondrocalcinosis&#44; particularly in the knees&#44; that may lead to joint function impairment&#46;4 <br></br><br></br>Magnesium&#160; deficiency&#160; usually&#160; results&#160; from&#160; magnesium loss&#44; either through the gastrointestinal tract or the kidney&#46; Diseases causing acute or chronic diarrhea&#44; either or not associated&#160; to&#160; malabsorption&#44;&#160; commonly&#160; induce&#160; magnesium&#160; deficiency&#46;&#160; Diabetes&#160; is&#160; probably&#160; the&#160; most&#160; common&#160; systemic disease associated to hypomagnesemia&#46; Osmotic diuresis due to&#160; glycosuria&#160; results&#160; in&#160; renal&#160; loss&#160; of magnesium&#46; Different drugs&#160; such&#160; as&#160; diuretics&#44;&#160; aminoglycosides&#44;6 cyclosporin&#44;7 and cisplatin may also cause renal loss of magnesium&#46; <br></br><br></br>RENAL HANDLING OF MAGNESIUM&#160; HOMEOSTASIS <br></br><br></br>Magnesium&#160; plasma&#160; levels&#160; are&#160; regulated within&#160; a&#160; very&#160; narrow margin by changes in urinary excretion of this cation in response to intestinal absorption changes&#46; The kidney therefore&#160; plays&#160; an&#160; essential&#160; role&#160; in&#160; magnesium&#160; homeostasis&#46;4&#44;8 Only&#160; a&#160; small&#160; fraction&#160; of&#160; filtered magnesium&#160; is&#160; reabsorbed into the proximal tubule &#40;approximately 15&#37; of the filtered load&#41;&#46; Most&#160; renal&#160; reabsorption of magnesium occurs&#160; in&#160; the thick ascending limb of Henle&#191;s loop &#40;&#177; 70&#37;&#41; through a paracellular passive transport &#40;fig&#46; 1&#41; driven by an electric gradient&#46; Approximately 10&#37; of filtered magnesium is reabsorbed&#160; into&#160; the&#160; distal&#160; convoluted&#160; tubule&#160; &#40;DCT&#41;&#160; and&#160; the <br></br>connecting tubule by a process of transcellular active transport&#46;6&#44;8 Apical entry into DCT and connecting tubule cells is mediated by&#160; special magnesium-permeable channels called TRPM6&#160; &#40;transient receptor&#160; potential&#160; cation&#160; channel&#44;&#160; subfamily M&#44; member&#160; 6&#41;&#160; that&#160; are&#160; driven&#160; by&#160; a&#160; favorable&#160; transmembrane voltage gradient&#46;9 The mechanism of basolateral magnesium&#160; exit&#160; to&#160; the&#160; interstitium&#160; is&#160; unknown&#160; &#40;fig&#46;&#160; 2&#41;&#46; Magnesium should be extruded against an unfavorable electrochemical gradient&#44; which is most likely to occur through a Na&#43;&#47;Mg2&#43; exchanger and&#47;or a Mg2&#43;ATPase&#46; Finally&#44; 3&#37;-5&#37; of filtered magnesium is excreted in urine&#46; In hypomagnesemia&#160; states&#44;&#160; the kidney may&#160; reduce magnesium excretion&#160; to 0&#46;5&#37; of the filtered load&#44; while in hypermagnesemia it may excrete up&#160; to 80&#37; of&#160; the&#160; filtered&#160; load&#46; Despite&#160; the&#160; significant&#160; role&#160; play&#160; by&#160; transepithelial&#160; transport&#160; mechanisms&#160; in magnesium handling&#44; such mechanisms have not been fully elucidated yet&#46; <br></br><br></br>HEREDITARY DISORDERS OF MAGNESIUM HANDLING AND NEW PROTEINS IMPLICATED IN MAGNESIUM TRANSPORT <br></br><br></br>Hereditary primary hypomagnesemia is a rare group of heterogeneous&#160; disorders&#160; characterized&#160; by&#160; renal&#160; or&#160; intestinal magnesium loss with magnesium depletion frequently associated&#160; to&#160; impaired&#160; calcium&#160; excretion&#44;&#160; resulting&#160; in&#160; shared symptoms&#160; of&#160; tetany&#160; and&#160; generalized&#160; seizures&#46;&#160; Study&#160; of these disorders has&#160; allowed&#160; for&#160; a deeper understanding of the cellular and molecular mechanisms&#160; that play a significant role in renal magnesium reabsorption&#46; In recent years&#44; genetic&#160; studies&#160; on&#160; several&#160; of&#160; these&#160; hereditary&#160; disorders have&#160; revealed&#160; four new proteins&#160; that are&#160; involved&#160; in&#160; renal magnesium transport&#58; 1&#41; claudin-16&#44; 2&#41; the abovementioned magnesium&#160; epithelial&#160; channel&#44; TRPM6&#44; 3&#41;&#160; the gamma&#160; subunit&#160; of&#160; Na&#44;K-ATPase&#44;&#160; and&#160; 4&#41;&#160; pro-EGF&#160; &#40;pro-epidermal growth factor&#41;&#46; <br></br><br></br>Familial hypomagnesemia with hypercalciuria and nephrocalcinosis and mutations in tight junction proteins claudin-16 and -19 <br></br>In 1999&#44; a rare syndrome&#44; familial hypomagnesemia with hypercalciuria and nephrocalcinosis &#40;FHHNC&#41;&#44; was found to be caused by mutation of paracellin-1&#44; subsequently called claudin-16&#46;10 Tubular&#160; disorders&#160; and&#160; progression&#160; to&#160; renal&#160; insufficiency&#160; are&#160; usually&#160; resistant&#160; to magnesium&#160; replacement&#160; and hydrochlorothiazide treatment&#44; but magnesemia may improve with the advance of renal failure&#46; <br></br><br></br>As previously stated&#44; the bulk of magnesium tubular reabsorption occurs in the ascending thick limb of Henle&#191;s loop&#46; <br></br>This&#160; tubular&#160; segment&#160; consists&#160; of&#160; a&#160; watertight&#160; epithelium&#44; which is very important to generate the medullary hyperosmolarity gradient caused by sodium chloride absorption on which subsequent water reabsorption by the collecting tubule depends&#46;&#160; Sodium&#160; chloride&#160; reabsorption&#160; depends&#160; on&#160; the presence in the apical membrane of tubular cells in this region of an electron-neutral cotransporter carrying two chlorines&#44;&#160; one&#160; potassium&#44;&#160; and&#160; one&#160; sodium&#160; &#40;NKCC2&#41;&#44; which&#160; is the molecular&#160; target of&#160; the&#160; so-called&#160; loop diuretics&#160; such as furosemide&#46;&#160; Potassium&#160; must&#160; exit&#160; again&#160; into&#160; the&#160; tubular lumen&#160; through&#160; special&#160; channels&#160; called ROMK&#160; &#40;renal outer medullary K channels&#41;&#46; This generates and maintains a positive&#160; intratubular&#160; potential&#160; of&#160; 6&#160; to&#160; 12 mVolt&#44; which&#160; in&#160; turn drives paracellular reabsorption of divalent cations calcium and magnesium&#46;&#160;&#160; The&#160; finding&#160; that&#160; the&#160; paracellular&#160; protein <br></br>claudin-16&#44; expressed in the tight junctions of the ascending thick limb of Henle&#191;s loop&#44; was involved in magnesium reabsorption&#160; initially suggested&#160; that&#160; this protein could be&#160; the paracellular&#160; route&#160; for magnesium&#160; reabsorption&#46; When a series of claudin-16 mutations found in FHHNC patients were investigated by expressing them in renal cell lines&#44; most of these mutated proteins were found to be retained within the cell&#46; A few mutant proteins were directed&#44; as normally occurs&#44;&#160; towards&#160; tight&#160; junctions&#44;&#160; but&#160; these&#160; showed&#160; a&#160; reduced conductivity&#160; for magnesium&#46;11 It was&#160; therefore&#160; thought&#160; that claudin-16 mutations found in FHHNC affected its intracellular traffic or paracellular permeability to magnesium&#46; However&#44; other studies have shown that claudin-16 only has a low permeability to magnesium&#44; but has a high permeability to&#160; sodium&#44;&#160; and&#160; it was&#160; postulated&#160; that&#160; claudin-16&#160; formed&#160; a paracellular shunt for sodium in the interstitium to return to the tubular lumen&#44; contributing to the generation of the positive potential in the tubular lumen&#46;12 This hypothesis was recently evaluated using RNA interference&#160; technology&#160; to generate a mouse model with a great&#160; reduction&#160; in claudin-16 expression&#46;13 This mouse model showed urinary loss of magnesium&#160; and&#160; calcium&#44; bone mass&#160; reduction&#44;&#160; and&#160; subsequent <br></br>development&#160; of&#160; nephrocalcinosis&#160; as&#160; seen&#160; in&#160; patients&#160; with FHHNC&#46; A detailed&#160; analysis&#160; of&#160; the&#160; function&#160; of&#160; the&#160; ascending&#160; thick&#160; limb of Henle&#160; in&#160; these mice with no claudin-16 showed&#160; a&#160; decreased&#160; paracellular&#160; permeability&#160; to&#160; sodium with&#160; a&#160; strong&#160; reduction&#160; in&#160; the&#160; lumen-positive&#160; potential&#46; These data would&#160; show&#160; that claudin-16 may be part of&#160; the tight junction complex that selectively mediates back diffusion of sodium from interstitium to the lumen of the ascending&#160; thick&#160; limb of Henle&#44; generating&#160; the electropositive&#160; luminal potential&#160; that&#160; is critical&#160; for paracellular&#160; reabsorption of calcium and magnesium&#46; <br></br><br></br>In a study on patients with mutations resulting in a complete loss of function of both claudin-16 alleles&#44; they were found to be younger at symptom start as compared to subjects who had&#160; an&#160; allele&#160; providing&#160; a&#160; partial&#160; function&#46;14 In&#160; addition&#44;&#160; patients with a complete&#160; function&#160; loss had a&#160; faster&#160; impairment of glomerular filtration rate&#44; which caused that more than half of them required renal replacement therapy at 15 years of age&#44; As compared to only 20&#37; of those with residual allele function&#46; Existence of residual claudin-16 function could therefore delay progression to renal failure in patients with FHHNC&#46; <br></br><br></br>More recently&#44; nine families with severe hypomagnesemia with mutations in the gene encoding claudin-19 have been reported&#46;15 Claudin-19&#160; is another&#160; tight&#160; junction protein expressed in renal tubules and eyes&#46;16 This is why patients with claudin-19 mutations have ocular symptoms such as severe visual impairment&#44;&#160; macular&#160; coloboma&#44;&#160; horizontal&#160; nystagmus&#44;&#160; and marked myopia which do not occur in patients with claudin16 mutations&#46;&#160; In&#160; epithelial&#160; cells&#160; of&#160; pig&#160; kidneys&#44;&#160; claudin-19 acts as a chloride blocker&#44; while claudin-16 acts as a sodium channel&#46;&#160; Claudin-19&#160; mutations&#160; found&#160; in&#160; patients&#160; with FHHNC were unable&#160; to block permeability&#160; to chloride&#46; Co-expression of claudin-16 and -19 generates cation selectivity of the tight junction in a synergistic manner&#46;17 <br></br><br></br>Hypomagnesemia with secondary hypocalcemia and mutations of the magnesium channel TRPM6 <br></br>This&#160; rare&#160; autosomal&#160; recessive&#160; disease&#160; &#40;HSH&#59;&#160; OMIM 602014&#41;&#44;&#160; characterized&#160; by&#160; low&#160; serum&#160; magnesium&#160; levels with&#160; a&#160; high&#160; urinary&#160; fractional&#160; secretion&#160; of magnesium&#44;&#160; is caused&#160; by&#160; nonsense&#160; or&#160; antisense&#160; mutations&#160; in&#160; the&#160; apical magnesium&#160; channel&#44; TRPM6&#46;18 Subsequent&#160; studies&#160; showed TRPM6 to be a channel permeable to magnesium expressed in&#160; the&#160; luminal membrane of&#160; intestinal epithelium and DCT and&#160; connecting&#160; tubule&#46;19 TRPM6&#160; inactivating&#160; mutations cause&#160; an&#160; intestinal&#160; absorption&#160; impairment&#160; combined&#160; with renal loss of the cation&#46; <br></br><br></br>Gitelman syndrome is another hereditary disorder also causing changes in the epithelial magnesium channel&#46; This hereditary disorder is caused by function loss due to mutations in the gene encoding&#160; the Na-Cl cotransporter of&#160; the distal convoluted&#160; tubule&#160; &#40;NCCT&#41;&#46;&#160; It&#160; is&#160; characterize&#160; by&#160; hypokalemia&#44; metabolic&#160; alkalosis&#44;&#160; hypomagnesemia&#44;&#160; and&#160; hypocalciuria&#46; Hypomagnesemia&#160; developing&#160; during&#160; chronic&#160; hydrochlorothiazide treatment and in Na-Cl cotransporter knockout mice&#44; an animal model of Gitelman syndrome&#44; is due to downregulation of the epithelial magnesium channel&#44; TRPM6&#46; Downregulation of this channel may therefore represent a general mechanism&#160; involved&#160; in&#160; the&#160; pathogenesis&#160; of&#160; hypomagnesemia that is associated to inhibition or inactivation of the Na-Cl co-transporter&#46;20&#44;21 <br></br><br></br>Autosomal dominant renal hypomagnesemia with hypocalciuria and mutations in the Na&#44;K-ATPase subunit <br></br>In&#160; the&#160; kidney&#44; Na&#43;&#44; K&#43;-ATPase&#160; is&#160; an&#160; oligomer&#160; &#40;alpha&#47;beta&#47;gamma&#41; with equimolar amounts of the alpha and beta essential subunits and a small hydrophobic protein&#44; the gamma subunit&#46; FXYD2 or gamma subunit of Na&#44;K-ATPase belongs to the FXYD&#160; family&#160; of&#160; proteins&#44; which&#160; are&#160; tissue-specific Na&#44; K-ATPase&#160; modulators&#160; and&#160; include&#160; phospholemman&#160; &#40;or FXYD1&#41;&#160; and&#160; CHIF&#160; &#40;corticosteroid&#160; hormone-induced&#160; factor or FXYD4 &#41;&#46; Expression of protein FXYD2 or gamma subunit is essentially restricted to the kidney and has two main variants&#44;&#160; gamma&#160; a&#160; and&#160; gamma&#160; b&#46; While&#160; phospholemman&#160; and CHIF increase the apparent affinity of Na&#44; K-ATPase for intracellular Na&#40;&#43;&#41;&#44;&#160; the gamma subunit decreases sodium affinity&#46;22 The&#160; two variants of&#160; the gamma&#160; subunit affect&#160; the catalytic properties of the pump&#46; Both variants are coexpressed in the proximal tubule and medullary portion of the ascending thick limb of Henle&#191;s loop&#46; Distribution of both variants in all other&#160; tubular&#160; segments differs&#58; only&#160; the gamma&#160; a variant&#160; is present in macula densa and principal cells of the initial parts of the collecting tubule&#46; The gamma b variant is in the cortical portion&#160; of&#160; the&#160; ascending&#160; thick&#160; limb&#160; of&#160; Henle&#191;s&#160; loop&#46;23 The gamma subunit is an activator of Na&#43;&#44; K&#43;-ATPase in the external medullary zone of the kidney&#44; and its phosphorylation by&#160; PKA increases&#160; its&#160; capacity&#160; to&#160; stimulate&#160; hydrolysis&#160; of ATP&#46;24 <br></br><br></br>In a large Dutch family with autosomal dominant renal hypomagnesemia associated to hypercalciuria&#44; the disease locus was&#160; recently&#160; mapped&#160; to&#160; a&#160; 5&#46;6-cM&#160; region&#160; on&#160; chromosome 11q23&#46;25 After candidate&#160; screening&#44; a heterozygous mutation was identified in gene FXYD2&#44; encoding for the gamma subunit&#160; of&#160; Na&#40;&#43;&#41;&#44;K&#40;&#43;&#41;-ATPase&#44;&#160; cosegregating&#160; with&#160; patients from this family&#44; and which was not found in 132 control chromosomes&#46; The mutation leads to a G41R substitution&#44; introducing a charged amino acid residue into the predicted transmembrane&#160; region of&#160; the gamma subunit protein&#46; Expression studies&#160; in&#160; insect&#160; Sf9&#160; and&#160; COS-1&#160; cells&#160; showed&#160; the&#160; mutant gamma subunit to be misrouted and to accumulate in perinuclear structures&#46;&#160;&#160;&#160; In addition&#160; to misrouting of mutant G41R&#44; <br></br>Western&#160; blot&#160; analysis&#160; of Xenopus&#160; oocytes&#160; expressing&#160; either the wild or the mutant type of the gamma subunit showed that a post-translational change was lacking in the mutant gamma subunit&#46; Finally&#44; researchers studied two subjects who lacked a copy of the FXYD2 gene and found that the serum magnesium levels&#160; were&#160; within&#160; the&#160; normal&#160; range&#46;&#160; Retention&#160; of&#160; mutant gamma subunits in precise intracellular structures was therefore&#160; associated&#160; to&#160; an&#160; aberrant&#160; post-translational&#160; processing&#46; Thus&#44; the G41R mutation in protein FXYD2 causes dominant renal hypomagnesemia associated&#160; to hypocalciuria&#160; through a negative dominant mechanism&#46; Despite the foregoing&#44; the mechanism by which&#160; a mutation&#160; in&#160; a&#160; regulatory protein of&#160; the Na&#40;&#43;&#41;&#44;K&#40;&#43;&#41;-ATPase&#160; pump&#160; causes&#160; renal magnesium&#160; loss&#160; has not been elucidated yet&#46; <br></br><br></br>Isolated recessive renal hypomagnesemia and mutations in pro-EGF <br></br>This disease&#160; &#40;IRH&#41;&#160; is&#160; characterized by&#160; low magnesium&#160; levels&#44; normocalciuria&#44;&#160; and mental&#160; retardation with&#160; seizures&#46; Groenestetege et al studied&#160; two sisters born from asymptomatic inbred parents&#44; which suggested an autosomal recessive pattern&#46;26 Mutations&#160; in other genes previously&#160; identified with&#160; renal&#160; handling&#160; of magnesium were&#160; ruled&#160; out&#160; in&#160; these patients&#46; Genetic mapping allowed these authors to identify a critical gap junction with a LOD score of 2&#46;66 at 18&#46;4 cM on chromosome 4 between markers D4S2623 and D4S1575&#46; Among&#160; candidate&#160; genes&#160; located&#160; in&#160; that&#160; region&#44;&#160; the&#160; EGF &#40;epidermal growth factor&#41; gene was considered highly relevant&#46; EGF&#160; sequencing&#160; in&#160; affected&#160; subjects&#160; identified&#160; a&#160; homozygous mutation C3209T in exon 22&#160; that caused substitution&#160; of&#160; a&#160; highly&#160; conserved&#160; proline&#160; by&#160; a&#160; leucine&#160; in&#160; the cytoplasmic tail of pro-EGF &#40;P1070L&#41;&#46; The EGF gene consists of 24 exons encoding a long precursor protein anchored to the type I membrane that undergoes proteolytic cleavage to be converted into pro-EGF&#44; which eventually generates an acidic 53-amino&#160; acid hormone&#44; EGF&#46;27 EGF belongs&#160; to&#160; the EGF-like&#160; growth&#160; factor&#160; family&#44; whose members&#160; have&#160; profound effects upon cell differentiation&#44; and is a potent mitogen&#46;28 EGF is bound with great affinity to the EGF receptor &#40;EGFR&#41;&#46; EGF&#160; is very abundant&#160; in&#160; the DCT and appears&#160; to be&#160; secreted&#160; both&#160; to&#160; the&#160; apical&#160; and&#160; basolateral&#160; sides&#44; while EGFR mainly occurs in the basolateral membrane&#46; Groenestege et al26 showed that the P1070L mutation in pro-EGF appeared to affect EGF routing and basolateral secretion&#44; whereas apical release was not affected in Madin-Darby canine kidney&#160; cells&#160; &#40;MDCK&#41;&#46; Despite&#160; the&#160; fact&#160; that&#160; proline&#160; 1&#44;070 may be part of&#160; the PXXP motif causing basolateral sorting of&#160; pro-EGF&#44;&#160; expression&#160; of&#160; mutated&#160; pro-EGF&#160; &#40;P1070L&#41;&#160; in human embryonic kidney cells &#40;HEK&#41; may also affect EGF <br></br>formation&#44; suggesting&#160; the possibility&#160; that&#160; the mutation may affect pro-EGF processing&#46; <br></br><br></br>Regardless of whether the mutation found in patients with IRH&#160; causes mistargeting&#160; or&#160; impairment&#160; in&#160; pro-EGF&#160; processing&#44; Groenestege et al26 found&#160; that EGF markedly&#160; increases the activity of&#160; the magnesium channel TRPM6&#46; This&#160; led&#160; the authors to propose a physiological model in which a basal activity&#160; of&#160; basolateral&#160; activation&#160; of&#160; EGFR&#160; is&#160; required&#160; for TRPM6 activity and apical entry of magnesium&#46; This model is&#160; consistent&#160; with&#160; the&#160; hypomagnesemia&#160; seen&#160; in&#160; cancer&#160; patients&#160; treated with&#160; the&#160; anti-EGF&#160; antibody&#160; cetuximab&#46;29&#44;30 To support this concept&#44; the authors showed that cetuximab also antagonized stimulation of TRPM6 activity by EGF in cultured cells&#46; <br></br><br></br>PERSPECTIVE <br></br><br></br>After many&#160; decades&#160; of&#160; research&#44;&#160; in-depth&#160; understanding&#160; of control of magnesium homeostasis&#160; is&#160; still&#160; lacking&#46; Study of the different hereditary disorders of magnesium has demonstrated new proteins involved in its handling&#46; The most significant finding may perhaps be that EGF acts as an autocrine&#47;paracrine&#160; mangesiotropic&#160; factor&#44; which&#160; opens&#160; the&#160; way&#160; to&#160; a better understanding of active magnesium reabsorption in the distal tubule&#46; Pending questions include whether the effect of EGF&#160; is&#160; exerted&#160; through&#160; regulation&#160; of&#160; channel&#160; activity&#160; or whether it regulates its apical expression&#44; and which are its intracellular signaling pathways&#46; Understanding of all these mechanisms will open the door to a set of therapeutic objectives to be able to manipulate renal magnesium handling&#46; <br></br>"
    "pdfFichero" => "P-E-S-A362-EN.pdf"
    "tienePdf" => true
    "tieneResumen" => true
    "resumen" => array:2 [
      "es" => array:1 [
        "resumen" => "El magnesio es el segundo i&#243;n intracelular m&#225;s com&#250;n y el cuarto cati&#243;n m&#225;s abundante del cuerpo&#46; Este cati&#243;n bivalente tiene un rol fundamental en numerosos procesos metab&#243;licos como la s&#237;ntesis de prote&#237;nas y ADN y la fosforilaci&#243;n oxidativa&#59; es tambi&#233;n un cofactor cr&#237;tico de gran n&#250;mero de reacciones enzim&#225;ticas&#44; e interviene en la regulaci&#243;n de canales i&#243;nicos &#40;1&#41;&#46; En los sujetos normales&#44; un cambio agudo en la concentraci&#243;n s&#233;rica de magnesio afecta la funci&#243;n paratiroidea&#58; su ca&#237;da estimula la secreci&#243;n&#44; mientras que la hipermagnesemia inhibe la liberaci&#243;n de PTH &#40;2&#44;3&#41;&#46;"
      ]
      "en" => array:1 [
        "resumen" => "Magnesium is the second most common intracellular ion and the fourth most abundant cation in the body&#46; This divalent cation plays an essential role in many metabolic processes such as protein and DNA synthesis and oxidative phosphorylation&#46; It is also a critical cofactor in a high number of enzymatic reactions&#44; and is involved in regulation of ion channels&#46;1 In normal subjects&#44; an acute change in serum magnesium levels affects parathyroid function&#58; decreased magnesium levels stimulate secretion&#44; while hypermagnesemia inhibits PTH release&#46;2&#44;3"
      ]
    ]
    "bibliografia" => array:2 [
      "titulo" => "Bibliography"
      "seccion" => array:1 [
        0 => array:1 [
          "bibliografiaReferencia" => array:29 [
            0 => array:3 [
              "identificador" => "bib1"
              "etiqueta" => "1"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "1-Naderi AS, Reilly RF jr: Hereditary etiologies of hypomagnesemia. Nat Clin Pract Nephrol 2008; 4(2) 80-89."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib2"
              "etiqueta" => "2"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "2- Ferment O., Garnier P.E., Touitou Y. Comparison of the feedback effect of magnesium and calcium on parathyroid hormone secretion in man. J Endocrinol 1987; 113:117¿122."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib3"
              "etiqueta" => "3"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "3- Cholst I.N., et al. The influence of hypermagnesemia on serum calcium and parathyroid hormone levels in human subjects. N Engl J Med 1984; 310:1221¿1225."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib4"
              "etiqueta" => "4"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "4- Konrad M., Schlingmann K.P., Gudermann T. Insights into the molecular nature of magnesium homeostasis. Am. J Physiol Renal Physiol 2004; 286:F599¿F605."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            4 => array:3 [
              "identificador" => "bib5"
              "etiqueta" => "5"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "5- Agus Z.S. Hypomagnesemia. J Am Soc Nephrol 1999; 10:1616¿1622."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            5 => array:3 [
              "identificador" => "bib6"
              "etiqueta" => "6"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "6- Zaloga GP, Chernow B, Pock A, Wood B, Zaritsty A Zucker A: Hypomagnesemia is a common complication of aminoglycoside therapy. Surg Gynecol Obstet 1984; 158:561-565."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            6 => array:3 [
              "identificador" => "bib7"
              "etiqueta" => "7"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "7- June CH, Thompson CB, Lkennedy MS, Nims J, Thomas ED: Profound hypomagnesemia and renal magnesium wasting associated with the use of cyclosporine for bone marrow transplantation. Transplantation 1985; 39:620-624"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            7 => array:3 [
              "identificador" => "bib8"
              "etiqueta" => "8"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "8- Hoenderop J.G. and Bindels R.J. Epithelial Ca2+ and Mg2+ channels in health and disease. J Am Soc Nephrol 2005; 16:15¿26"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:1 [
                        "itemHostRev" => array:3 [
                          "pii" => "S0140673604161461"
                          "estado" => "S300"
                          "issn" => "01406736"
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            8 => array:3 [
              "identificador" => "bib9"
              "etiqueta" => "9"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "9- Voets T, Nilius B, Hoef S, Van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG: TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 2004; 279:19¿25."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            9 => array:3 [
              "identificador" => "bib10"
              "etiqueta" => "10"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "10- Simon DB, Lu Y, Choate KA, Velásquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodríguez Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 1999; 285(5424):103-6."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            10 => array:3 [
              "identificador" => "bib11"
              "etiqueta" => "11"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "11- Kausalya PJ, Amasheh S, Gunzel D, Wurps H, Muller D, Fromm M, Hunziker W: Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest 2006;116:878-91."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            11 => array:3 [
              "identificador" => "bib12"
              "etiqueta" => "12"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "12- Hou J, Paul DL, Goodenough DA. Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci 2005; 118:5109-18."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            12 => array:3 [
              "identificador" => "bib13"
              "etiqueta" => "13"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "13- Hou J, Shan Q, WangT, Gomes AS, Yan Q, Paul DL, Bleich M, Goodenough DA: Transgenic RNAi depletion of claudin 16 and the renal handling of magnesium.J Biol Chem 2007; 282:17114-22."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            13 => array:3 [
              "identificador" => "bib14"
              "etiqueta" => "14"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "14- Konrad M, Hou J, Weber S, Dotsch J, Kari JA, Seemann T et al: CLDN16 Genotype predicts renal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 19(1):171-81, 2008."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            14 => array:3 [
              "identificador" => "bib15"
              "etiqueta" => "15"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "15- Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A et al.: Mutations in the tight-junction gene claudin 19 (CLDN19) area associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79:949-957, 2006."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            15 => array:3 [
              "identificador" => "bib16"
              "etiqueta" => "16"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "16-Angelow S Renal localization and function of the tight junction protein claudin-19. Am J Physiol Renal Physiol 293:F166-F177, 2007."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            16 => array:3 [
              "identificador" => "bib17"
              "etiqueta" => "17"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "17-Hou J, Renigunta A, Konrad M, Gomes AS, Scheeberger EE , Paul DL, Waldegger S, Goodenough DA: Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest 118(2):619-28, 2008."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            17 => array:3 [
              "identificador" => "bib18"
              "etiqueta" => "18"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "18- Schlingmann K.P., et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 2002; 31:166¿170"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            18 => array:3 [
              "identificador" => "bib19"
              "etiqueta" => "19"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "19- Walder R.Y., et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 2002; 31:171¿174"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            19 => array:3 [
              "identificador" => "bib20"
              "etiqueta" => "20"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "20- Simon D.B., et al. Genetic heterogeneity of Bartter¿s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 1996; 14:152¿156."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            20 => array:3 [
              "identificador" => "bib21"
              "etiqueta" => "21"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "21- Nijenhuis T, Vallon V, van der Kemp A, Loffing J, Hoenderop J GJ, Bindels RJM: Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 2005; 115(6):1651-8"
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            21 => array:3 [
              "identificador" => "bib22"
              "etiqueta" => "22"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "22- Geerinng K: Function of FXYD proteins, regulators of Na, K-ATPase. J Bioenerg Biomembr. 2005; 37(6):387-92."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            22 => array:3 [
              "identificador" => "bib23"
              "etiqueta" => "23"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "23-Farman N, Fay M, Cluseaud F: Cell-specific expression of three members of the FXYD family along the renal tubule. Ann N Y Acad Sci 986:4428-436, 2003."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            23 => array:3 [
              "identificador" => "bib24"
              "etiqueta" => "24"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "24- Cortes VF, Veiga-Lopes FE , Barrabin H, Alves-Ferreira M, Fontes CF: The gamma subunit of Na+, K+-ATPase: role on ATPase activity and regulatory phosphorylation by PKA. Int J Biochem Cell Biol. 2006; 38(11):1901-13.25- Meij IC, Koenderink JB, De Jong JC, De Pont JJ, Monnens LA, Van Den Heuvel LP, Knoers NV: Dominant isolated renal magnesium loss is caused by misrouting of the Na+,K+-ATPase gamma-subunit. Ann N Y Acad Sci. 2003; 986:437-43."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            24 => array:3 [
              "identificador" => "bib25"
              "etiqueta" => "25"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "26- Groenestege WM, Thébault S, van der Wijst J, van den Berg D, Janssen R, Teipar S, van den Heuvel LP, van Cutsem E, Hoenderop JG, Knoerss NV, Bindels RJ: .Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest. 2007; 117(8):2260-7."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            25 => array:3 [
              "identificador" => "bib26"
              "etiqueta" => "26"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "27- Bell GI: Human epidermal growth factor precursor: cDNA sequence, expression in vitro and gene organization. Nucleic Acids Res 1986; 14:8427-8446."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            26 => array:3 [
              "identificador" => "bib27"
              "etiqueta" => "27"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "28- Gray A, Dull TJ, and Ullrich A Nucleotide sequence of epidermal growth factor cDNA predicts a 128,000-molecular weight protein precursor. Nature 19833; 3033:722-725."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            27 => array:3 [
              "identificador" => "bib28"
              "etiqueta" => "28"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "29- Schrag D, Chunng KY, Flombaum C and Saltz L Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Ins 2005; 97:1221-1224."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
            28 => array:3 [
              "identificador" => "bib29"
              "etiqueta" => "29"
              "referencia" => array:1 [
                0 => array:3 [
                  "referenciaCompleta" => "30- Tejpar S, Piessevaux H, Claes K, Piront P, Hoenderop JG, Verslype C, van Cutsem E: Magnesium wasting associated with epithermal-growth ¿factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncol 2007; 8:387-394."
                  "contribucion" => array:1 [
                    0 => null
                  ]
                  "host" => array:1 [
                    0 => null
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/20132514/0000002800000005/v0_201502091635/X2013251408004006/v0_201502091635/en/main.assets"
  "Apartado" => null
  "PDF" => "https://static.elsevier.es/multimedia/20132514/0000002800000005/v0_201502091635/X2013251408004006/v0_201502091635/en/P-E-S-A362-EN.pdf?idApp=UINPBA000064&text.app=https://revistanefrologia.com/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X2013251408004006?idApp=UINPBA000064"
]
Article information
ISSN: 20132514
Original language: English
DOI:
The statistics are updated each day
Year/Month Html Pdf Total
2024 November 11 10 21
2024 October 119 32 151
2024 September 115 18 133
2024 August 166 56 222
2024 July 130 25 155
2024 June 137 33 170
2024 May 149 40 189
2024 April 99 31 130
2024 March 170 21 191
2024 February 99 42 141
2024 January 81 21 102
2023 December 92 32 124
2023 November 95 38 133
2023 October 129 25 154
2023 September 142 28 170
2023 August 144 34 178
2023 July 176 25 201
2023 June 98 20 118
2023 May 90 29 119
2023 April 100 22 122
2023 March 85 19 104
2023 February 56 25 81
2023 January 58 24 82
2022 December 53 28 81
2022 November 50 39 89
2022 October 53 40 93
2022 September 54 44 98
2022 August 33 32 65
2022 July 34 49 83
2022 June 37 30 67
2022 May 33 30 63
2022 April 36 45 81
2022 March 42 46 88
2022 February 32 41 73
2022 January 36 28 64
2021 December 33 37 70
2021 November 39 43 82
2021 October 43 33 76
2021 September 27 33 60
2021 August 34 34 68
2021 July 40 27 67
2021 June 23 23 46
2021 May 28 25 53
2021 April 32 51 83
2021 March 40 41 81
2021 February 38 19 57
2021 January 28 16 44
2020 December 20 15 35
2020 November 25 19 44
2020 October 15 16 31
2020 September 25 19 44
2020 August 27 8 35
2020 July 17 9 26
2020 June 24 13 37
2020 May 29 10 39
2020 April 27 20 47
2020 March 32 7 39
2020 February 19 22 41
2020 January 34 18 52
2019 December 25 14 39
2019 November 35 23 58
2019 October 11 13 24
2019 September 17 15 32
2019 August 10 14 24
2019 July 14 23 37
2019 June 19 12 31
2019 May 24 13 37
2019 April 44 26 70
2019 March 16 17 33
2019 February 18 15 33
2019 January 38 17 55
2018 December 54 34 88
2018 November 59 26 85
2018 October 37 18 55
2018 September 46 20 66
2018 August 39 15 54
2018 July 52 13 65
2018 June 35 14 49
2018 May 43 14 57
2018 April 31 9 40
2018 March 27 7 34
2018 February 34 5 39
2018 January 28 6 34
2017 December 44 13 57
2017 November 26 9 35
2017 October 26 10 36
2017 September 36 8 44
2017 August 27 9 36
2017 July 22 9 31
2017 June 17 8 25
2017 May 27 23 50
2017 April 21 5 26
2017 March 17 24 41
2017 February 12 9 21
2017 January 12 10 22
2016 December 37 8 45
2016 November 26 5 31
2016 October 52 7 59
2016 September 92 2 94
2016 August 92 3 95
2016 July 92 3 95
2016 June 89 0 89
2016 May 124 0 124
2016 April 77 0 77
2016 March 73 0 73
2016 February 93 0 93
2016 January 84 0 84
2015 December 110 0 110
2015 November 75 0 75
2015 October 53 0 53
2015 September 64 0 64
2015 August 82 0 82
2015 July 43 0 43
2015 June 38 0 38
2015 May 54 0 54
2015 April 5 0 5
Show all

Follow this link to access the full text of the article

Idiomas
Nefrología (English Edition)
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?