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Introduction: Hemodialysis wastewater contains high concentrations of ammonia nitrogen

and phosphorus. Recovery of these nutrients as  soil fertilizers represents an  interesting

opportunity to ensure a  sustainable fertilizer supply.

Methods: In this paper, a simple method for recovering phosphorous and nitrogen as crys-

talline struvite [MgNH4PO4·6H2O] is presented. An integrated cost  model is also presented

in  order to  create a  positive business case.

Results: Recovery rates in form of struvite of 95% of PO4
3−-P and 23% of NH4

+-N were achieved

with a  profit.

Conclusion: To the best of our knowledge, this paper is the first to study the recovery of these

naturally occurring minerals from hemodialysis wastewater. This offers great potential for

the valorization of this type of wastewater.

©  2023 Sociedad Española de Nefrologı́a. Published by Elsevier España, S.L.U. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
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Introducción: El agua residual de la hemodiálisis contiene altas concentraciones de nitrógeno

amoniacal y  fósforo. La recuperación de dichos nutrientes como fertilizantes del suelo repre-

senta  una oportunidad interesante para garantizar un suministro de  fertilizantes sostenible.

Métodos: En este documento se presenta un método simple de recuperar fósforo y  nitrógeno

en  forma de cristales de estruvita [MgNH4PO4·6H2O]. También se presenta un modelo de

costes integrado para crear un caso de  negocio positivo.

Resultados: Se  lograron unas tasas de  recuperación en forma de  estruvita del 95% de PO4

3−-P y  el  23% de  NH4 +-N,  con beneficio.
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Conclusión: Según nuestros conocimientos, este documento es el primero que estudia la

recuperación de estos minerales de origen natural del agua residual de  la hemodiálisis, lo

cual ofrece un gran potencial para la valorización de este tipo de  aguas residuales.

©  2023 Sociedad Española de  Nefrologı́a. Publicado por Elsevier España, S.L.U. Este es  un

artı́culo Open Access bajo la licencia CC BY-NC-ND (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

Introduction

Hemodialysis consumes huge volumes of water and produce

large quantities of wastewater containing many  potential

resources like organic matter, nitrogen, and phosphorus.1

Therefore, recovery and reuse of these nutrients as  agri-

cultural fertilizers is highly desirable.1,2 We have previously

demonstrated that hemodialysis wastewater is  a valuable

resource that can provide fit-for-purpose water,3 energy,4

nutrients,1,2 and carbon emission savings.5

The discharge of wastewater in hemodialysis is high and

could be estimated annually at approximately 98 million cubic

meters over the world and 18 million cubic meters in  United

States.6,7 In our country, Morocco the discharge is estimated at

1 million cubic meters each year.6,7 In a world where demands

for freshwater are ever growing, and where limited water

resources are increasingly stressed by over-abstraction, pollu-

tion and climate change, neglecting the opportunities arising

from improved wastewater management is nothing less than

unthinkable.5,8,9

Hemodialysis wastewater which contains a  high amount

of phosphorus and nitrogen would be a good source of

struvite (MgNH4PO4·6H2O  – magnesium ammonium phos-

phate hexahydrate).10 This precipitate, due to its chemical

characteristics, represents an  effective alternative source of

rock phosphate fertilizer for vegetables and plants growth.11

Nitrogen and phosphorus in  wastewaters are also a  burn-

ing environmental issue. Recovering these elements from

wastewater can also help reducing the  amount of phosphorus

entering the environment and thus lowering the environmen-

tal impact.11

To the best of our knowledge, this paper is  the first to

study the recovery of this naturally occurring mineral from

hemodialysis wastewater. This offers great potential for the

valorization of this type of wastewater.

Materials  and  methods

Sampling  and  analyses

Water samples were obtained from a  single dialysis facil-

ity. Wastewater was collected from the outflow pipe that

drains hemodialysis effluent (spent dialysate) directly into the

municipal sewage line. Samples were stored at 4 ◦C soon after

sampling until used in  struvite precipitation tests.

Samples were analyzed for the concentration of cations,

anions, chemical oxygen demand (COD), ortho-phosphate

(PO4
3−-P) and total ammonium nitrogen (NH4

+-N). The cation

concentrations were determined using an ICP-OES, type

Perkin Elmer Optima 3000 DV (Waltham, Massachusetts,

USA). The anion concentrations were determined using an

ion chromatography system, type Metrohm IC Compact 761

(Schiedam, The Netherlands). NH4
+-N  was  analyzed using test

kit LCK  303. PO4
3−-P was analyzed using test kit LCK 348 and

COD was analyzed using test kit LCK 314 (all Dr. Lange, HACH,

Loveland, Colorado, USA) in a  spectrophotometer HACH XION

500 (HACH, Loveland, Colorado, USA). The biological oxygen

demand (BOD) was determined using the OxiTop® system

(WTW, Germany) over a period of 5 days at 20 ◦C.

Crystallizations  experiments

A 5 l  laboratory-scale, single-cell electrochemical batch reactor

was used for struvite production (Fig. 1). The pH  and tem-

perature values were monitored through online probes. In all

experiments, magnesium chloride hexahydrate (MgCl2·6H2O)

was added to  meet a  molar ratio [Mg2+: Ca2+ >  2] and [Mg2+:

PO4
3− >  1], which were selected based on data reported by Li

et al.12 and Liu et al.13 who found struvite crystals with high

purity and high phosphorus recovery when using these molar

ratios. Crystallization was attained at electric current density

of 55  A  m−2.  The obtained struvite cake from the process was

dried at room temperature to form a powder.

Struvite  precipitate  characterization

The crystalline nature and the semi quantitative composition

were determined by X-ray diffraction (XRD; Bruker D2  Phaser),

using struvite standard X-ray diffraction patterns. Phospho-

rus precipitation in the crystallizer was assessed using “The

percentage of precipitated phosphorus as  struvite” (PMAP, %).

PMAP was calculated as  the ratio of the number of pre-

cipitated mmoles of struvite (n(MAP)) (mmol), which was

assumed to be  the  lowest value between the precipitated

mmoles of Mg2+, PO4
3−-P and NH4

+-N and the precipitated

mmoles of PO4
3−-P in the solution, as shown in the  equation

below14:PMAP (%) =
n (MAP)preciptitated

(PO4
3−-P)preciptitated

×  100

Results

Characterization  of  hemodialysis  wastewater

The characteristics of the wastewater are shown in Table 1; the

average concentration of PO4
3−-P and NH4

+-N  was 13.2 mg  L−1

and  4.2 mg L−1 respectively. The samples had an  average pH  of

7.53. The BOD was found to be approximately 8.13 mg  L−1,  and

the COD was 1053 mg L−1.
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Fig. 1 – Experimental equipment for struvite crystallization.

Evaluation  of  phosphorus  and  nitrogen  recovery

Under optimal conditions, the  removal efficiencies of PO4
3−-P

and NH4
+-N in  struvite precipitation were analyzed as  approx-

imately 95% and 23%, respectively (Table 2). The phosphorus

removal as struvite was  similar at the three pH  conditions

evaluated (i.e., pH 8, 9 and 10). Although, the removal of NH4
+-

N increased as the  pH  value increased (Fig. 2). The nitrogen

removal can be  explained as  a  combination of the precipi-

tation and volatilization processes, the latter favored under

well-mixing conditions at higher pH  levels.15 Temperature has

a relatively less significant effect on struvite precipitation than

the pH level. However, the temperature strongly influences the

efficiency of  phosphate removal.

Precipitates  formed  in  the  crystallization  process

The X-ray diffractogram obtained in the analysis of the solids

precipitated shows a good correlation between the peaks of

the diffractogram obtained for the solid collected in the reactor

and the peak of the struvite pattern which confirms that the

solid formed was  mainly struvite. Phosphorus precipitation in

the crystallizer was higher at a  pH of 9 and 10 than at a  pH of

8, and the mean PMAP was 82.8%.

Economic  efficiency  of  struvite  production

We  did an estimate of the  financial efficiency of struvite pro-

duction based on a  tailor-designed system for a medium sized

dialysis facility working with 20 machines filled to  capac-

ity and 2 shifts/day and generating approximately 3000 l  of

wastewater (150 l of waste dialysate is being generated during

each dialysis session: assuming a  DFR of 500 ml/min, 120 L of

dialysate is produced during a  typical 4H hemodialysis ses-

sion + 30 L of water needed for chemical disinfection of the

hemodialysis monitor5). The system was  designed to produce

struvite on a regular basis (2.4 kg of struvite can be produced

daily). The system consists of wastewater collection tank; a
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Fig. 2 – Effect of pH and temperature on phosphorus and nitrogen removal.

Table 1 – Results of physico-chemical characterization of
effluents from hemodialysis. The average was obtained
from four different samples obtained on different days.

Composition Average Range

Temperature (◦C) 23.5 22–25

pH 7.53 6.91–8.15

COD (mg L−1) 1053 986–1120

BOD (mg L−1)  8.13 7.98–8.28

NH4
+-N  (mg L−1)  4.2 3.05–5.35

PO4
3−-P (mg L−1) 13.2 12.32–14.08

Sodium (mg L−1) 3289 3243.4–3334.6

Potassium (mg L−1) 93.7 88–99.4

Magnesium (mg L−1)  52.1 49.8–54.4

Calcium (mg L−1) 86.2 81.9–90.5

Alkalinity (mg L−1 as CaCO3) 1715 1667–1763

COD (chemical oxygen demand) is the amount of dissolved oxygen

that must be  present in water to oxidize chemical organic materi-

als.

BOD (biochemical oxygen demand) is  the  amount of dissolved

oxygen used by microorganisms in  the biological process of  metab-

olizing organic matter in water.

struvite reactor for struvite precipitation and a pilot scale

rotating biological contactor (RBC) to treat a small fraction of

the effluent from struvite production before disposing it to the

Table 3 – Operating parameters for economic evaluation
of struvite production from hemodialysis wastewater.

Parameters Results

Reactor size (l) 500

Cycles per  day 6

Struvite recovery efficiency (%)  (PO4
3−-P/NH4

+-N) 90/20

Daily struvite production (kg) 2.44

Yearly struvite production (kg) 760

Molar Mg:P ratio 1.1

Yearly required  MgSO4 (kg)16 45

Yearly required MgSO4 evaluation was performed according to the

method by Agudosi et al.16

environment (Table 3). Data on costs and benefits are shown

in Table 4.

Discussion

Recognition that hemodialysis wastewater is an economic

resource capable of supplying water,3 nutrients,1,2 energy4 and

other valuable materials and services4,5 has become a  major

driving force to  improve effective wastewater management.5

Each year, for instance, approximately 98  million cubic meters

of hemodialysis wastewater are generated globally.6,7 Theo-

Table 2 – Removal efficiency of phosphorus and nitrogen.

T (◦C) 20  20 20 25 35  40

pH 8  9  10 9  9 9

Removal efficiency (%)

PO4
3−-P 91.5 ± 0.2 92.6 ±  0.1 91.9 ± 0.3 97.5 ± 0.2 98.6 ± 0.0 98.2 ± 0.1

NH4
+-N 14.6 ± 1.4 22.3 ±  0.7 40.1 ± 0.4 16.3 ± 1.1 20.5 ± 0.4 27.4 ± 1.2

MAP precipitates

PMAP (%) 70.4 ± 0.3 83.4 ±  1.6 82.8 ± 0.9 92.5 ± 0.4 77.3 ± 1.8 90.1 ± 1.0

Mass (g) 3.9 ± 0.0 3.7 ±  0.1 4.2 ± 0.1 4.4 ± 0.0 4.1 ± 0.2 4.1 ± 0.1

PMAP: the percentage of  phosphate as struvite.
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Table 4 – Estimating cost of nutrients recovery as
struvite.

Operations parameters Results

Equipment cost (USD) 1350

Wastewater storage tank: 3 m3 (USD) 180

Additional costs (fittings, pipes, etc.) (USD) 80

Estimated total  investment (USD) 1610

Required MgSO4 price (USD/kg)17 0.33

Operations costs (USD/year) 100.3

Maintenance costs (USD/year) 48

Operating duration (year) 10

Struvite market price (USD/kg)18 0.8

Annual cash inflow (USD) 608

Payback period (month) 42

Prices were calculated according to Refs. 16  and 17.

retically, the resources embedded in this wastewater would

be enough to irrigate and fertilize hundreds of thousands of

hectares of crops.

This effluent can also maintain considerable thermal

energy quantities, which is discharged to  the sewer system

with temperature ranging from 20 to 25 ◦C.  It is estimated

that 1698 GWh  per year of thermal energy is  lost in sewers

in dialysis units all over the world and 314 GWh  in the  US (the

specific thermal capacity of wastewater is: 1.16 kWh/m3
× K;

the wastewater in  the  effluent will be cooled down to 5 ◦C, so

that 15 K can be extracted).19

Globally, hemodialysis wastewater is estimated to con-

tain enough energy to heat 141,500 homes (the average home

requires around 12,000 kWh  of heat/year),20 with an  annual

fuel cost savings of 118 million Euros if recovered by using

technologies like heat exchangers and reused to satisfy heat-

ing demands (12,000 kWh  heat demand/3 kW heat production

per unit of electricity = 4000 kWh  of electricity. Average resi-

dential electricity price in Europe is 0.21 euros).21

Hemodialysis wastewater maintains good amount of car-

bon, nitrogen and phosphorus, of which have large impacts on

the environment. Wastewater from hemodialysis can disrupt

aquatic ecosystems with deleterious impacts on aquatic biodi-

versity, landscapes and recreational opportunities.22 Recovery

of nutrients from wastewater can alleviate major environ-

mental problems related to  nutrient pollution in ground and

surface water sources.21 In this pilot study, recovery rates of

95% of PO4
3−-P and 23% of NH4

+-N were achieved.

Application of struvite in the agricultural sector promises

to be a profitable investment. It has been demonstrated that

generating 1  kg of struvite per day is  enough to fertilize 2.6 ha

of arable land by applying phosphorus (as P2O5)  at a  rate of

40 kg/ha year.20 In this study we were able to demonstrate

that an hemodialysis facility with 20 chairs and 2  shifts/day

could generate approximately 2.4 kg of struvite per working

day with a profit, and a possibility to fertilize 5.2 ha of arable

land (estimation based on 6 working days/week). Regarding

the environmental cost, the use of wastewater in lieu of syn-

thetic fertilizers can results in an  important carbon emissions

saving. De Vries et  al.,  have estimated that the use of struvite

as fertilizer can results in saving of −0.35 kg CO2 eq. kg−1 of

struvite.23

Conclusion

The recovery of phosphorus and nitrogen from wastewater is

a  model for sustainable innovation in hemodialysis. Remov-

ing nutrients from where they should not be and using them

to  create a  new generation of enhanced-efficiency fertilizer is

the smart thing to do economically and the right thing to do

environmentally.
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