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a b  s t  r  a c t

Mitogen-activated protein kinases (MAP kinases) are  functionally connected kinases that

regulate key cellular process involved in kidney disease such as  all survival, death, differ-

entiation and proliferation. The typical MAP kinase module is composed by a  cascade of

three kinases: a  MAP kinase kinase kinase (MAP3K) that phosphorylates and activates a

MAP  kinase kinase (MAP2K) which phosphorylates a  MAP kinase (MAPK). While the role

of MAPKs such as ERK, p38 and JNK  has been well characterized in experimental kidney

injury, much less is known about the apical kinases in the cascade, the MAP3Ks. There are

24  characterized MAP3K (MAP3K1 to MAP3K21 plus RAF1, BRAF and ARAF). We  now review

current knowledge on the involvement of MAP3K in non-malignant kidney disease and the

therapeutic tools available. There is in vivo interventional evidence clearly supporting a  role

for MAP3K5 (ASK1) and MAP3K14 (NIK) in the pathogenesis of experimental kidney disease.

Indeed, the  ASK1 inhibitor Selonsertib has undergone clinical trials for diabetic kidney dis-

ease. Additionally, although MAP3K7 (MEKK7, TAK1) is required for kidney development,

acutely targeting MAP3K7 protected from acute and chronic kidney injury; and targeting

MAP3K8 (TPL2/Cot) protected from acute kidney injury. By contrast MAP3K15 (ASK3) may

protect from hypertension and BRAF inhibitors in clinical use may induced acute kidney

injury and nephrotic syndrome. Given their role as upstream regulators of intracellular sig-

naling, MAP3K are potential therapeutic targets in kidney injury, as  demonstrated for some

of them. However, the role of most MAP3K in kidney disease remains unexplored.
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0211-6995/© 2019 Sociedad Española de Nefrologı́a.  Published by Elsevier España, S.L.U. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.nefroe.2019.12.004   

2013-2514



n e  f r o l o g i  a 2 0  1 9;3  9(6):568–580 569

MAP3K  quinasas  y daño  renal

Palabras clave:

ASK1

MAP3K14

NIK

TWEAK

NF-kappaB

Riñón
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r  e  s  u m e n

Las proteínas quinasas activadas por mitógenos (MAP quinasas) son quinasas conectadas

funcionalmente que regulan procesos celulares clave involucrados en la enfermedad renal

como  la supervivencia, la muerte, la diferenciación y  la proliferación. El típico módulo MAP

quinasa está compuesto por una cascada de 3 quinasas: una MAP  quinasa quinasa quinasa

(MAP3K) que fosforila y  activa una MAP quinasa quinasa (MAP2K) que, a  su vez, fosforila una

MAP quinasa (MAPK). Si bien el papel de  las MAPK como ERK, p38 y  JNK se ha caracterizado

bien en las lesiones renales experimentales, se sabe mucho menos acerca de  las quinasas

apicales en la cascada, las MAP3K. Hay 24 MAP3K (MAP3K1 a  MAP3K21, más  RAF1, BRAF y

ARAF). En este trabajo revisamos el  conocimiento actual sobre la participación de MAP3K

en  la enfermedad renal no maligna y  las herramientas terapéuticas disponibles. Existe evi-

dencia  intervencionista experimental in vivo que  respalda claramente el papel de MAP3K5

(ASK1)  y  MAP3K14 (NIK) en la patogenia de  la enfermedad renal experimental. De hecho, el

inhibidor de  ASK1, selonsertib, ha sido estudiado en ensayos clínicos en la enfermedad renal

diabética. Además, aunque la MAP3K7 (MEKK7, TAK1) es necesaria para el desarrollo renal,

la  inhibición de  MAP3K7 en el adulto protegió de la lesión renal aguda y crónica experimen-

tal;  e inhibir MAP3K8 (TPL2/Cot) protegió de la lesión renal aguda. Por el contrario, MAP3K15

(ASK3)  puede proteger de  la  hipertensión y  los inhibidores de BRAF, en uso clínico, pueden

inducir lesión renal aguda y síndrome nefrótico. Dado su papel como reguladores de los

primeros pasos de la señalización intracelular, las MAP3K son posibles dianas terapéuticas

en la lesión renal, como se ha demostrado para algunas de ellos. Sin embargo, el papel de

la  mayoría de las MAP3K en la enfermedad renal no ha sido explorado.

©  2019 Sociedad Española de Nefrologı́a. Publicado por Elsevier España, S.L.U.  Este es un

artı́culo Open Access bajo la licencia CC BY-NC-ND (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

Chronic kidney disease (CKD) and acute kidney injury (AKI)
are major causes of death and disability.1,2 It is estimated that
10% of the adult population worldwide has CKD while the
incidence of AKI is growing.3,4 Both are associated with an
increased risk of premature death and, in fact, CKD was  among
the fastest growing causes of death worldwide, according to
the Global Burden of Disease (GBD) study.5 As an example,
data from the GBD  2016 Spain analysis suggest that at the
current rate of growth, CKD will become the  second most com-
mon  cause of death, after Alzheimer, by the year  2100.6,7 This
growing burden of kidney disease reflects the need for ear-
lier biomarkers of kidney injury that allow preventive rather
than therapeutic intervention as well as  the need for more
effective therapeutic interventions.2,8 Kinases are a family
of intracellular signaling regulators that have become ther-
apeutic targets for diverse diseases and kinase inhibitors are
in clinical use mainly in the oncology and immune regula-
tion fields.9 Among kinases, mitogen-activated protein kinase
kinase kinases (MAP3K) are of special interest given their local-
ization at the apex of diverse intracellular signaling pathways
in response to environmental stimuli and recent preclinical
evidence supporting a key role of some of them, such as
MAP3K14, in the pathogenesis of kidney injury.10 We  now
review MAP3Ks and the preclinical and clinical evidence sug-
gesting a contribution to kidney injury and that they may
become therapeutic targets in both AKI and CKD.

Mitogen-activated  protein  kinase  cascades

Mitogen-activated protein kinases (MAP kinases) are func-
tionally connected kinases that regulate key cellular process
involved in kidney disease such as  all survival, death, differ-
entiation and proliferation. The typical MAP  kinase module
is composed by a  cascade of three kinases: a  MAP  kinase
kinase kinase (MAP3K) that phosphorylates and activates a
MAP kinase kinase (MAP2K) which in turn phosphorylates a
MAP kinase (MAPK) (Fig. 1). MAP3Ks are activated by MAP4Ks,
oxidative stress, small proteins G or by TRAF adaptor proteins
in response to growth factors, inflammatory cytokines, drugs,
or physical stress. There are 24 characterized MAP3K, named
from MAP3K1 to MAP3K21 plus RAF1, BRAF, and ARAF. Most of
them are expressed by normal kidneys (Fig. 2).11

The final targets of MAPK modules are transcription
factors or other kinases that regulate gene expression by
transcriptional or post-transcriptional mechanisms.12 There
are four well known and conventional MAPK pathways: the
ERK pathway, the JNK pathway, the p38 pathway and the ERK5
pathway.13,14 The ERK pathway was the first characterized
MAPK cascade. It is formed by three MAP3Ks RAF1, ARAF and
BRAF, two  MAP2Ks, MEK1 and MEK2 and two  MAPK, ERK1 and
ERK2, collectively known as  ERK1/2. The ERK pathway has
multiple functions, and is generally associated to survival and
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Figure 1 –  The best characterized MAPK modules and cascades. Most information on a role of the cascade in the kidney was

obtained by studying the MAPK component of the cascade and it cannot be extrapolated to the MAP3K component since

these enzymes may  have additional functions.
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Figure 2  – Constitutive MAP3K expression in murine kidneys. Data obtained by RNA-seq analysis of three normal murine

kidneys. Mean ± SD of gene expression in kidneys from 3 wild-type control mice.11

proliferation in different tissues including kidney.15,16 How-
ever, additional functions have been described. As examples,
in the kidney ERK pathway mediated TWEAK-induced prolif-
eration and pro-inflammatory response in tubular cells.15,17

The JNK pathway is composed by seven MAP3K, MLK1–4
(respectively MAP3K9–11 and MAP3k21), DLK (MAP3K12), LZK
(MAP3K13) and ZAK (MAP3K20); two MAP2Ks (MKK4/7) and
three MAPKs (JNK1, JNK2, JNK3). It is generally related to
cell proliferation, and it has also been linked to the devel-
opment of renal fibrosis and inflammation in cyclosporine
nephrotoxicity.18–21 The p38 pathway is formed by 5  MAP3Ks,
ASK1/2 (MAP3K5/6 respectively), TAK1 (MAP3K7), TAO1
(MAPK16), and TAO2 (MAP3K17); two MAP2Ks MKK3/6 and
four MAPKs p38 (�, �, �,  �). This pathway regulates and

frequently promotes renal inflammation and apoptosis.22,23

As examples, p38 mediates proliferation of tubular cells
induced by TWEAK and expression of inflammatory media-
tors in  renal cells induced by MIF.15,24 The ERK5 pathway is
composed by 2 MAP3K, MEEK2/3 (MAP3K2 and 3 respectively);
MAP2K MEK5 and MAPK ERK5. ERK5 is  the  only ERK protein
that contains a nuclear localization signal it appears to regu-
late cell proliferation and dedifferentiation in  the kidney, like
ERK1/2.18,25,26

ERKs 3, 4, 7 are atypical pathways and the  upstream MAPKs
involved in their activation and function are poorly character-
ized, and some evidences indicate that could be activated by
autophosphorylation.18 Moreover, ERK 3 and 4 could also be
activated by Group I p21-activated Kinases (PAKs) indicating
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that they are not activated by a typical MAPK module.27 ERK8 is
the most recently identified protein kinase that is  regulated by
autophosphorylation and specific upstream activating kinase
are unknown.28

Additional MAP3K are not associated with specific MAPK
cascades. One example is NF-kappa-B-inducing kinase (NIK),
initially identified as a  kinase that participates in  NF�B
activation. The amino-acid sequence reveled that it is a ser-
ine/threonine kinase like MAP3Ks, although the signaling
pathway is not a classical MAPKs module.29 NIK is a  key pro-
tein for non-canonical, NF�B2 activation and is required for
the physiological immune response and also promotes inflam-
mation. In the kidney, NIK targeting may be protective during
kidney injury.10,30

Drugs  targeting  MAP3K  kinases

A search in Scifinder (https://scifinder.cas.org)  for small
molecule inhibitors of MAP3K, made by searching individual
molecules by their official gene symbol and alternative names,
disclosed that small molecule inhibitors were under study for
14 of them (Table 1). Inhibitors for five MAP3K are in clinical
use for malignancy, although in some cases MAP3K inhibition
is a promiscuous effect of a drug targeted to a  different kinase.

MAP3K

Table 2 summarizes current knowledge about MAP3K involve-
ment in non-malignant kidney disease. Our group has been
instrumental in developing the evidence base supporting the
involvement of MAP3K14/NIK as a pathogenic molecule in kid-
ney disease. However, the potential role  of most MAP3K in
kidney disease remains unexplored in vivo.

MAP3K14/NIK

MAP3K14/NIK has been conclusively demonstrated to  be acti-
vated in experimental kidney disease and to contribute to the
severity of experimental kidney injury (Fig. 3). NIK is the essen-
tial upstream serine/threonine kinase of the non-canonical
NF�B pathway.29 It is  now known that NIK protein levels are
regulated both transcriptionally (as in AKI and in tubular cells
in response to TWEAK) and post-transcriptionally.10 Thus,
concentrations are low in quiescent cells because of low mRNA
levels and rapid degradation of the protein. Cytokines and
oxidative stress may increase NIK mRNA  as well as protein sta-
bility, leading to  NIK activation.10,31 NIK induces I�B kinase-�

(IKK-�)-mediated phosphorylation of NF�B2 p100, and phos-
phorylated p100 undergoes ubiquitination and subsequent
proteasomal processing to active NF�B2 p52.32 Efficient NF�B2
p100 ubiquitination requires Uba3 (ube1c) and Ube2m (UBC12),
ube2d3 (UBCH5c) and intact Cullin1 in SCFˇ−TrCP.33 Interest-
ingly, the Ube2m E2 ubiquitin conjugating enzyme and cullin-1
of the SCFˇ−TrCP E3  ubiquitin ligase were upregulated in AKI.10

Additional functions of NIK have been recently reported, but
their role in kidney injury remains unclear.34–37

NF�B promotes inflammation in the kidney, as  well as
having multiple other functions such as  promoting cell

survival or  decreasing the expression of anti-inflammatory
proteins such as Klotho and PGC1� in response to TWEAK
or tissue injury, while the involvement of NF�B  in other
TWEAK-dependent responses such as induction of kidney-
protective CCl20 expression has not been characterized.38–44

Recent studies have focused on NF�B activity modulation
by proteins such as Bcl3 and NF�Biz.45,46 Canonical NF�B
activation, a  rapid process triggered by multiple stimuli has
been best characterized and is responsible for most activities
of TWEAK in cultured tubular cells, including expression of
most chemokines47 although some (e.g. CCL21) were early on
show to be dependent on non-canonical NF�B activation.30

Although non-canonical NF�B activation has been reported
in several kidney disease, the pathogenic role of NIK has
been best characterized in experimental AKI induced by folic
acid (crystal nephropathy) or cisplatin.30,48,49 Evidence for NIK
activation in vivo in  AKI included increased NIK  mRNA  and
protein levels, NF�B p100 processing to NF�B p52, increased
nuclear localization and DNA binding activity of p52/RelB and
decreased kidney inflammation, cell death and fibrosis and
preserved renal function in NIK activity deficient mice, which
were protected from AKI (Fig. 2).10 Upregulation of tubular cells
NIK was observed in both human AKI and CKD, suggesting
that NIK maybe a  therapeutic target in the clinical settings.
Protection from AKI may  depend on systemic NIK deficiency
(e.g. leukocyte NIK deficiency) and/or kidney NIK deficiency.
Cell culture and bone marrow transplantation experiments
support the hypothesis that renal cell NIK targeting is neces-
sary for nephroprotection. NIK and non-canonical NF�B  gene
targets have been characterized in the immune system, but
there was little prior information on kidney cells.38 In this
regard, NIK siRNA targeting reduced inflammatory responses
and serum deprivation-induced death in cultured tubular
cells.10 Interestingly, NIK targets in tubular cells included
both known non-canonical (e.g. CCl21, CXCL10) and canon-
ical (MCP1, Rantes) NF�B pathway targets.10,30 These results
were consistent with decreased inflammation and tubular cell
apoptosis in vivo in NIK activity-deficient mice during AKI.
These results are also consistent with observations targeting
another component of the non-canonical NF�B  pathway, RelB.
Thus, RelB targeting by siRNA protected mice against lethal
kidney ischemia-reperfusion, and RelB targeting in cultured
proximal tubular cells, protected from apoptosis induced by
TNF-cisplatin.50,51

Since NIK deficiency results in immune deficiency a  poten-
tial role of immune cell NIK in kidney injury cannot be
completely excluded. Thus, NIK inhibitors will be expected to
target both renal cells and leukocytes and may have adverse
effects related to immune suppression. The successful use of
NIK inhibitors in experimental systemic lupus erythemato-
sus, and, specifically, for lupus nephritis, should be  viewed in
the context of their immunosuppressive properties.52 Thus,
systemic lupus erythematosus is an autoimmune kidney dis-
ease and the current standard of therapy for lupus nephritis
is immune suppression.

Non-canonical NF�B  activation also contributes to
podocyte injury induced by TWEAK activation of this recep-
tor Fn14.49,53 In cultured podocytes, TWEAK increased the
expression of the chemokines CCL21, CCL19 and RANTES. The
CCL19 and the early RANTES responses depended on canon-
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Table 1 – MAP3K inhibitors. List according to a search in Scifinder (https://scifinder.cas.org) by their official gene symbol
and alternative names performed on September 15, 2018. The same table with references can be found as l.

Gene symbol (name) Inhibitors Representative inhibitor Inhibitors in clinical use

MAP3K1 (MEKK1) No No
MAP3K2 Yes No
MAP3K3 (MEKK3) No No
MAP3K4 No No
MAP3K5 (ASK1) Yes GS-4997 (Phase 2) No
MAP3K6 (ASK2) No No
MAP3K7 (MEKK7, TAK1) Yes 5Z-7-oxozeaenol No
MAP3K8 (TPL2) Yes No
MAP3K9 No No
MAP3K10 No No
MAP3K11 (MEKK11,
MLK3)

Yes URMC-099 No

–
–

MAP3K12 (MUK,
DLK)

Yes – Sunitinib  (Sutent,
SU11248)CEP-1347

GNE-3511
GNE-8505

MAP3K13 (LZK) Yes –  No
MAP3K14 (NIK) Yes – No

NIK  SMI1

Patent

Patent
MAP3K15 (ASK3) No –  No
MAP3K16 (TAO1,
TAOK1)

Yes No

Patent
MAP3K17 (TAO2,
TAOK2)

Yes Patent No

–
RAF1 (CRAF) Yes Regorafenib  (Stivarga)

Inhibition of RAF-1 > BRAF
Sorafenib (Nexavar; Sorafenibum; BAY 43-9006)
Inhibition of RAF1 > BRAF
Vemurafenib (Zelboraf, PLX4032/RG7204/RO5185426),
inhibition of RAF1 ∼BRAF

GW5074 Dabrafenib
(Tafinlar, GSK2118436) inhibition BRAF>RAF1

PLX-4720 Lifirafenib (BGB-283)
Inhibition RAF1 > BRAF

AZ628
ZM 336372
ZM 336372
GW 5074
RAF265
NVP-BHG712
TAK-632
RAF709
CCT196969
CCT241161
BAW2881 (NVP-BAW2881)
LY3009120

BRAF Yes SB-590885/SB-699393 Encorafenib
(Braftovi,  LGX818)
selectivity for BRAF

AZ304
GDC-0879
CEP-32496
RO5126766 (CH5126766)

ARAF Yes LY3009120 Lifirafenib (BGB-283)
Inhibition
A-RAF > RAF1 >  BRAF
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– Table 1 (Continued)

Gene symbol (name) Inhibitors Representative inhibitor Inhibitors in clinical use

ZAK (MLT, MLTK,
HCCS-4, MRK, AZK)

Yes Sorafenib
PLX-4720  Vemurafenib
AST-487 Imatinib (Gleevec)

Nilotinib (Tasigna)
Ponatinib (Iclusig)
Motesanib/AMG-706
Bofutinib/SKI-606 (Bosulif)

Table 2  – MAP3K and non-malignant kidney injury.

Gene symbol (name) Expression/activation in kidney injury Targeting in kidney injury Ref.

MAP3K1 (Mekk1) Protective? Mekk1 directly represses PKD1
transcription in  cultured cells. No in vivo studies

[112]

MAP3K5 (ASK1) Increased: activity in
glomerular and/or
tubular epithelial
cells  in IRI-AKI, DKD,
glomerulopathies
(crescentic
glomerulonephri-
tis/experimental
membranous
nephropathy) and
kidney fibrosis
induced by UUO

Protective. Targeting Ask1 with inhibitors and/or
genetic deficiency protective in AKI, glomerular
injury (crescentic glomerulonephritis), diabetic
kidney disease and kidney fibrosis (UUO). Clinical
trials in DKD did not meet endpoints.

[63–65,68,70,71,113]

MAP3K7 (MEKK7,
TAK1)

Increased: TAK1
increased in
cisplatin-induced
AKI, but not in UUO
in mice.

Protective: Conditional TAK1−/− protected from
kidney fibrosis (UUO); TAK1 inhibition protected
from cisplatin-induced or IRI AKI and IRI fibrosis.

[77–79]

Deleterious: MAP3K7−/− spontaneous neonatal
kidney scarring with retention of embryonic
nephrogenic rests.

[80]

MAP3K8 (TPL2) Cot/Tpl2
phosphorylated in
IRI

Protective:  Cot/Tpl2−/− mice protected from IRI:
decreased apoptosis

[81]

MAP3K14 MAP3K14
upregulation in
folate-induced AKI

Protective: MAP3K14 KO  protected from folate and
cisplatin-induced AKI

[10]

MAP3K15 (ASK3) Deleterious: hypertensive phenotype of  ASK3−/−

mice
[82]

BRAF (v-RAF) Deleterious: BRAF inhibitor nephrotoxicity in
humans: AKI and podocyte injury

[104,106]

AKI: acute kidney injury; IRI: ischemia/reperfusion injury; DKD: diabetic kidney disease; UUO: unilateral ureteral obstruction

ical NF�B activation, while the CCL21 response depended
on non-canonical NF�B activation and could be inhibited
by a specific NIK siRNA. Increased kidney Fn14 and CCL21
expression was also observed in podocytes in  rat proteinuric
kidney disease induced by puromycin, supporting the in vivo
relevance of the findings.49 In this regard, there is experimen-
tal and human kidney disease evidence supporting a  role of
TWEAK/Fn14 in promoting podocyte injury in proteinuric kid-
ney disease.53 The potential contribution of NIK to fibroblast
proliferation and activation induced by TWEAK and to kidney
fibrosis54,55 or  in endothelial cell responses to TWEAK56

has not been explored. In this regard, TWEAK, as other
inflammatory cytokines, promotes vascular calcification and
there is evidence of the cooperation between canonical and

non-canonical NF�B signaling, since a siRNA targeting RelB
reduced by 20% TWEAK pro-calcific effects and decreased
TWEAK-induced loss of human vascular smooth mus-
cle cells contractile phenotype and MMP9  activity, while
other effects were prevented by agents blocking canonical
activation.57,58

The p52/RelB heterodimers characteristic of NIK-initiated
non-canonical NF�B activation share a number of gene
targets with RelA-containing, classically activated NF�B
complexes.59–61 Since canonical NF�B activation is an early
transient response peaking at around 1–3 h while and non-
canonical NF�B activation is delayed and peaks at around 24  h,
non-canonical NF�B activation may  contribute to sustained
NF�B-dependent gene expression.38,62
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in Ortiz et al.10.

ASK1/MAP3K5

Apoptosis signal-regulating kinase 1 (ASK1) is activated by
oxidative stress and, in turn, activates MAPK p38 and JNK and
induces apoptotic, inflammatory, and fibrotic signaling in set-
tings of oxidative stress.23 There is convincing evidence of
the pathogenic role  of ASK1 in  experimental kidney disease
derived from the study of specific ASK1 inhibitors or  ASK1
deficient mice and a  clinical trial focused on diabetic kidney
disease (DKD) (Table 2).

The first reports focused on AKI. Ask1−/− mice are healthy
and are protected from AKI induced by ischemia–reperfusion
injury (IRI), while Ask1−/− cultured tubular cells are pro-
tected from hypoxia-induced cell death and transfection
with dominant-active ASK1 induced apoptosis.63,64 Addition-
ally, transfection of tubular cells with dominant-active ASK1
induced apoptosis decreased chemokine production. Evidence
from Ask1 involvement in AKI is also derived from studies
with small molecule inhibitors. NQDI-1, an ASK1 inhibitor
attenuated renal dysfunction and histological changes in rats
with IRI-AKI.65 In the same model, Oral GS-444217 reduced
serum creatinine and urea, tubular cell death and proinflam-
matory and profibrotic mediators in the kidney.23 GS-444217 is

a  selective ATP-competitive small-molecule inhibitor of ASK1
that inhibits ASK1 autophosphorylation and ASK1-mediated
signaling in  cells and in vivo.23 Nephroprotection may expand
to additional kidney diseases characterized by tubular injury,
such as myeloma kidney, which is triggered by the  presence
in urine of massive amounts of immunoglobulin free light
chains. Thus, in cultured human proximal tubular cells, free
immunoglobulin light chains increased Ask1 phosphorylation
and Ask1 siRNA targeting protected tubular cells from light
chain-induced apoptosis.66

Protection by Ask1 targeting has  also been reported for
experimental glomerular injury. In glomerular epithelial
cells (GEC), sublytic complement activation induced oxida-
tive stress and activated Ask1, JNK and p38 MAPK and
this was  decreased by a  dominant negative ASK1 mutant.
ASK1 promoted complement-mediated lysis and this was
dependent on p38 MAPK activity.67 The in vivo relevance of
these findings was supported by the observation of increased
glomerular ASK1 activity during experimental membranous
nephropathy, a proteinuric kidney disease characterized by
podocyte (glomerular epithelial cell).67 However, in  vivo tar-
geting was not attempted. More  recent reports explored Ask1
inhibitors. In accordance to  prior observations of MAPK p38
and JNK  activation and the beneficial effect of their targeting



n e  f r o l o g i  a 2 0  1 9;3  9(6):568–580 575

in experimental crescentic glomerulonephritis, GS-444217
decreased glomerular inflammation and fibrosis, proteinuria
and preserved renal function in diverse rat  experimental
models of crescentic glomerulonephritis.68

Unilateral ureteral obstruction (UUO) is used as a model
of accelerated CKD  that recapitulates most of the  human
features of the disease.69 p38 and JNK were activated in
kidney fibrosis induced by UUO. In Ask1−/− mice with
ureteral obstruction, p38 was  not activated, JNK activation
was decreased and kidney inflammation and fibrosis were
milder. The key cell targets responsible for kidney protec-
tion appeared to  be the tubular cells, since tubular cell
p38 activation was observed in vivo and Ask1-deficient cul-
tured tubular cells were protected from angiotensin II and
H2O2,  induced p38 activation and upregulation of TGF�1,
and chemokines, while Ask1−/− fibroblast activity was not
impaired.70

However, the  studies with more  translational potential
explored DKD. The ASK1 pathway is  activated in glomeruli and
tubules of human and experimental DKD. GS-444217 reduced
inflammation and fibrosis, prevented albuminuria develop-
ment and preserved renal function in  experimental DKD and
the effect was observed on top of renin–angiotensin system
blockade.23 However, in earlier studies in streptozotocin-
induced diabetes in hypertensive endothelial nitric oxide
synthase (Nos3)-deficient mice, GS-444217 did not decrease
hypertension or albuminuria, but decreased diabetic glomeru-
losclerosis and inflammation and reduced renal function.71

A Phase 2 placebo-controlled clinical trial investigating the
effects of three different doses of selonsertib (GS-4997) on
eGFR (primary end-point) and albuminuria (secondary end-
point) at week 48 in patients with type 2 diabetes was
completed in 2016.72 The fact that in a  phase 2 RCT the primary
endpoint was  ambitious, impact on eGFR and not albumin-
uria is unusual73 and likely reflects the lack of impact of Ask1
inhibition in at least some experimental models of DKD.71

While the results of the clinical trials have not been reported
in full, Gilead Sciences announced in 2016 that selonsertib did
not meet endpoints in DKD or pulmonary arterial hyperten-
sion, but clinical development continues with active phase 3
trials for nonalcoholic Steatohepatitis (NASH: NCT03053063,
NCT03053050) that completed enrollment in 2018.74 Although
as of December 6, 2018 there is no planned or ongoing selon-
sertib trial in DKD in clinicaltrials.gov, clinical development
for kidney disease appears to continue since phase 1 RCT
were registered in the Australia New Zealand Clinical Trial
Registry (ANZCTR) and other countries for patients with CKD
in the summer of 2018.75 Furthermore, at the 2018 American
Society of Nephrology Renal Week,  a post hoc analysis of the
phase 2 DKD trial was presented.76 The analysis excluded 2
sites for technical deviations as  well as patients with baseline
eGFR <20 mL/min/1.73 m2.  These exclusions may  represent
the identification of issues that blurred the information pro-
vided by the trial and considered not promising in 2016. In
this post hoc analysis, the highest dose of selonsertib (18 mg)
was associated with significantly milder eGFR slopes than
placebo both in the overall trial population and in a high risk
population defined by high baseline soluble TNFR1 (sTNFR1)
levels.76

Other  MAP3K  kinases:  MAP3K7,  MAP3K8  and
MAP3K15

Additional MAP3K have been targeted in vivo in  experimental
kidney disease (Table 2). MAP3K7 (MEKK7, TAK1) was increased
in cisplatin-induced AKI, but not in UUO in mice.77–79 However,
for kinases activity is  more  relevant that levels of expres-
sion. In this regard, conditional TAK1−/− mice were protected
from kidney fibrosis (UUO) and TAK1 inhibition with small
molecules protected from cisplatin-induced or  IRI  AKI and
IRI fibrosis.77–79 Specifically, in UUO, TAK1 deletion resulted
in suppression of JNK, p38, and NF-�B activation, and milder
inflammation and fibrosis.77 Despite this success, caution
should be exercised in  the  extrapolation of the  results to the
clinic, since MAP3K7 appears to have a key role in kidney
development and developmental genes may be re-expressed
during kidney disease and contribute to kidney repair. Thus,
MAP3K7−/− mice develop spontaneous neonatal kidney scar-
ring with retention of embryonic nephrogenic rests.80

There is also some experience targeting other MAP3K in
vivo. MAP3K8 (TPL2/Cot) is phosphorylated during IRI and
Cot/Tpl2−/− mice were protected from IRI and apoptosis was
decreased.81 By contrast MAP3K15 (ASK3) may  have a role
in protecting from hypertension. Thus, ASK3−/− mice have a
hypertensive phenotype.82

Lessons  from  kinase  inhibitors  in  clinical  use

Current available treatments for CKD are based on renal
angiotensin-system (RAS) blockade and immunosuppressive
drugs and can delay the development of renal failure but
inflammation and fibrosis keep progressing.73,83,84 Several
orally available kinase inhibitors, are currently in the pipeline
for the kidney disease.63 Data obtained from the clinical use
of kinase inhibitors outside nephrology may help to define
the role  of target kinases in  the human context, be it either
because of the  development of adverse effects or, as described
for the  Nrf2 activator bardoxolone, because kidney function
or adverse events are observed to improve.83,85 In any case,
nephrotoxicity observed with the high doses used to treat
cancer does not preclude a potential therapeutic effect of a
lower dose in kidney disease, although it does  provide a  note
of caution.

Since the approval of Imatinib, in 2001, more  than 30 small-
molecule kinase inhibitors are being used or tested in  cancer
treatment86–89 and inflammatory diseases.90,91 Most of the
approved kinase inhibitors are used to  treat malignancy.87,92–94

or, as  is  the case for JAK inhibitors baricitinib and tofacitinib,
autoimmune disease.95,96 Baricitinib also reduced albumin-
uria in patients with DKD.73,97 Some kinase inhibitors are
nephrotoxic. The most consistent nephrotoxicity is associated
with drugs targeting the VEGF pathway and its tyrosine kinase
receptor VEGFR, which can induce hypertension, albuminuria,
nephrotic syndrome or even thrombotic microangiopathy,
and this is  consistent with preclinical advances on its role
in endothelial and podocyte well-being.98,99 Some kinase
inhibitors are promiscuous and, thus it is  difficult to related
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side effects with inhibition of a  specific kinase. This is the case
for sorafenib, which inhibits VFGFR, PDGFR and BRAF, among
others.

There are fewer drugs in clinical use targeting MAP3K.
The ones available may inhibit several MAP3K, and thus, it
is difficult to pinpoint the exact kinase responsible for any
kidney actions. However, nephrotoxicity has been reported
for drugs that among other targets, inhibit BRAF (Table 1).
Vemurafenib and dabrafenib are BRAF inhibitors approved
for treatment of late-stage melanoma.100 Vemurafenib has
been associated to the development of AKI. Decreased of renal
function (mean reduction of 29 ml/min) was associated with
nephrotic range proteinuria in 5  patients.101,102 A  subsequent
study in 74 patients treated with vemurafenib, found severe
but reversible AKI predominantly in men  with proven tubu-
lar and interstitial damage in renal biopsy within the first 3
months of treatment.103 In the FDA review on Adverse Event
Reporting Systems of Vemurafenib, there were 132 cases of
AKI, 85 in men, and 47  in women.104 A  recent report observed
AKI in 25% of melanoma patients treated with a combination
therapy of the MEK  inhibitor cobimetinib and vemurafenib,
which was 60% lower than in  prior results with vemurafenib
monotherapy.105 Dabrafenib also has nephrotoxic potential,
with 13 cases of AKI detected form April 2013 to June 2014,
mostly in men  (12 men  vs  1 women).104 Podocyte injury lead-
ing to nephrotic developed in  one patient during dabrafenib
and trametinib treatment.106 In cultured podocytes, BRAF
inhibition decreased PLC�1 and nephrin expression, inhibited
the podocyte VEGF system and increased the permeability to
albumin.106 A patient on encorafenib and binimetinib, BRAF
and MEK  inhibitor, respectively, developed after two months
renal dysfunction and proteinuria due to crescentic glomeru-
lonephritis with a granulomatous reaction which reversed
following withdrawal of the  chemotherapy.107 In any case,
although clinical nephrotoxicity is  observed when used for
malignancy, it is still worth testing these agents for exper-
imental kidney disease in case a  lower dose may  favorable
impact kidney injury. We  should remember that the first
reports on captopril and the kidney referred to AKI and
glomerular injury at a time when considerably higher doses
were used.108–111

Conclusions

MAP3K sit at the cusp of intracellular signaling cascades,
making them potential targets for  therapeutic intervention.
However, for the very same reason they may  impact multi-
ple cell processes. They may  be targeted by small molecules,
but  the similarity between them is hindrance to the develop-
ment of specific inhibitors. Most of them remain unexplored
from the kidney point of view and this is an  opportunity.
Human experience is for the most part limited to small
molecules used in cancer therapy. In this regard, glomeru-
lar and tubular nephrotoxicity has been described, especially
for BRAF inhibitors. However, there is  experimental evi-
dence derived from genetically modified mice and/or the
in vivo use of small molecule inhibitors for a  pathogenic role
of MAP3K14/NIK, ASK1/MAP3K5, MAP3K7/MEKK7/TAK1, and
MAP3K8/TPL2/Cot in  AKI and/or CKD. Even a  clinical trial of

ASK1/MAP3K5 targeting was performed in DKD,  although the
results have not been published. Given the safety up to  now
of ASK1/MAP3K5 inhibitors in humans and the wide range
of responsive experimental nephropathies to MAP3K14/NIK,
ASK1/MAP3K5, MAP3K7/MEKK7/TAK1, and MAP3K8/TPL2/Cot,
further research should be aimed at defining the optimal drug,
dose and disease target for human drug development as  well
as  to define if there is any pathogenic role in kidney disease
for those MAP3K still unexplored in the kidney.
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