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a  b s  t r a  c t

Haemoglobin and myoglobin are haem proteins that play a  key role as  they help transport

oxygen around the body. However, because of their chemical structure, these molecules can

exert harmful effects when they are released massively into the  bloodstream, as  reported in

certain pathological conditions associated with rhabdomyolysis or intravascular haemol-

ysis. Once in the plasma, these haem proteins can be filtered and can accumulate in the

kidney, where they become cytotoxic, particularly for the tubular epithelium, inducing acute

kidney failure and chronic kidney disease. In this review, we will analyse the different patho-

logical contexts that lead to the renal accumulation of these haem proteins, their relation

to  both acute and chronic loss of renal function, the pathophysiological mechanisms that

cause adverse effects and the defence systems that counteract such actions. Finally, we  will

describe  the different treatments currently used and present new therapeutic options based

on  the  identification of new cellular and molecular targets, with particular emphasis on the

numerous clinical trials that are currently ongoing.
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Efectos  adversos  de la  acumulación  renal  de hemoproteínas.  Nuevas
herramientas  terapéuticas

Palabras clave:

Hemoglobina

Mioglobina

Hemoglobinuria

Rabdomiólisis

Hematuria

Fracaso renal agudo

Enfermedad renal crónica

r  e s u m  e n

La hemoglobina y  la mioglobina son hemoproteínas que juegan un papel fundamental

en el organismo ya que  participan en el transporte de oxígeno. Sin embargo, debido a  su

estructura química, estas moléculas pueden ejercer efectos deletéreos cuando se liberan al

torrente  sanguíneo de forma masiva, como sucede en determinadas condiciones patológicas

asociadas a  rabdomiólisis o hemólisis intravascular. Una vez en el  plasma, estas hemopro-

teínas se pueden filtrar y acumular en el riñón, donde resultan citotóxicas, principalmente

para el epitelio tubular, e inducen fracaso renal agudo y enfermedad renal crónica. En  la

presente revisión analizaremos los distintos contextos patológicos que provocan la acumu-

lación renal de  estas hemoproteínas, su relación con la pérdida de función renal a corto y

largo  plazo, los mecanismos fisiopatólogicos responsables de sus efectos adversos y los sis-

temas  de defensa que contrarrestan tales acciones. Por último, describiremos los  distintos

tratamientos utilizados actualmente y  mostraremos nuevas opciones terapéuticas basadas

en  la identificación de nuevas dianas celulares y  moleculares, prestando especial atención

a  los diversos ensayos clínicos que se  encuentran en marcha en la actualidad.

©  2017 Sociedad Española de  Nefrologı́a. Publicado por  Elsevier España, S.L.U. Este es un

artı́culo Open Access bajo la licencia CC BY-NC-ND (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

Introduction

Haemoglobin (Hb) and myoglobin (Mb) are haemoproteins that
play a crucial role in the body’s homeostasis, by oxygenating
tissues and participating in the regulation of blood pH levels.
Hb has a molecular weight of 64.5 kDa and is  composed of
four polypeptide chains known as globins.1 Each globin con-
tains a haem group with an  iron atom in its interior, which is
responsible for its functional properties. Mb  is  a  smaller pro-
tein with a molecular weight of 17 kDa, which is  formed by
a single globin. In physiological conditions, both Hb  and Mb
are found inside erythrocytes and muscle cells, respectively.
However, in certain pathological conditions, these molecules
are released into the blood stream and may  enter and accu-
mulate in the kidneys, where they are cytotoxic, especially
for the proximal tubule epithelium. In fact, the renal accu-
mulation of haemoproteins may induce acute kidney injury
(AKI) and chronic kidney disease (CKD). In recent years, new
mechanisms have been identified which are involved in kid-
ney damage linked to these molecules, which have helped to
develop experimental treatments that have already yielded
positive results in  recently published studies or in  ongoing
clinical trials, as described in more  detail below.

Origin  of  the  renal  accumulation  of
haemoproteins

Mb  builds up in the kidneys as  a result of severe muscular
damage (rhabdomyolysis), whereas Hb accumulates due to the
intravascular haemolysis of red blood cells or the rupture of
red blood cells that cross the glomerular membrane in dis-
eases with glomerular haematuria, such as IgA nephropathy
(IgAN), lupus or Alport syndrome. In this review, we will focus

on myoglobinuria and haemoglobinuria due to space limita-
tions.

Myoglobinuria

Myoglobinuria is  the presence of Mb in  urine, for which
the main cause is rhabdomyolysis or the rupture of skele-
tal muscle.2 Rhabdomyolysis may be caused by severe
trauma, situations of prolonged ischaemia, metabolic disor-
ders, intense physical activity, alcohol abuse and some toxic
compounds of chemical or biological origin3 (Fig. 1). The inci-
dence of rhabdomyolysis is  not entirely clear, but it has been
estimated that it could affect 7–10% of patients presenting
with an AKI.3,4

Haemoglobinuria

Haemoglobinuria is the presence of Hb in urine as a  result
of intravascular haemolysis. This causes a  renal overload of
Hb, especially when there is recurring exposure to free Hb.5

Some of the main aetiological causes of haemoglobinuria
include hereditary conditions, such as paroxysmal noctur-
nal haemoglobinuria, thrombotic thrombocytopenic purpura,
haemolytic-uraemic syndrome (HUS), sickle-cell anaemia
(SCA), cell membrane defects (elliptocytosis, spherocytosis,
etc.), enzymatic defects (glucose-6-phosphate dehydrogenase
deficiency, pyruvate kinase deficiency), severe haemolytic
anaemia caused by massive transfusion reactions, as  well as
other causes acquired from HUS and thrombotic microan-
giopathies of various origins6 (Fig. 1).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


n e f r  o l  o g i  a. 2 0 1 8;3 8(1):13–26 15

Transfusion 

reactions 

Acute 

glomerulonephritis 

Thalassaemia

Paroxysmal
nocturnal

haemoglobinuria

Malaria
Thrombotic

thrombocytopenic

purpura

Haemolytic-
uraemic
syndrome

Genetic

haemoglobinopathies

Complement 

disorders

Haemoglobinuria

Physical effort:

physical exercise

or convulsions

Direct muscle injury:

trauma, burns, crushing,

electrocution or surgery

Genetic defects:

glycolytic enzyme

deficiencies, mitochondrial

defects

Biological agents:

animal venom or

infections

Toxic agents and drugs:
statins, alcohol, cocaine,
methadone, heroin,
alkaloids, arsenic or
mercury

Electrolyte disorders:

hypocalcaemia,

hypophosphataemia

Muscle hypoxia:

prolonged immobilisation

or loss of consciousness

Metabolic disorders:

hyperaldosteronism,

diabetic ketoacidosis

or hypothyroidism

Rhabdomyolysis

Fig. 1 – Main causes of haemoglobinuria and rhabdomyolysis.

Haemoproteins  and  acute  kidney  injury

AKI is a common complication in  patients with haemoglobin-
uria or rhabdomyolysis, especially if they were already
suffering from kidney disease. Up to 50% of patients suffer-
ing from rhabdomyolysis develop AKI, depending on what is
the causes.7,8 Therefore, rhabdomyolysis is  one of the main
causes of AKI (5–25%) and results in death in 2–46% of cases in
the absence of dialysis.3,4 On many  occasions, situations asso-
ciated with intravascular haemolysis may  also induce AKI.9,10

Haemoproteins  and  chronic  kidney  disease

The onset of kidney disease in patients with renal accu-
mulation of  haemoproteins is well documented. It has been
reported that haemoglobinuria is an  independent risk fac-
tor for the onset and progression of CKD in people suffering
with SCA.11 Something similar occurs in paroxysmal noctur-
nal haemoglobinuria, a  disease in which CKD secondary to the

onset of renal vein thrombosis and haemoglobinuria is one of
its most significant complications, which may  affect 64% of
patients and cause 18% of deaths.12 In the absence of treat-
ment, the prognosis for atypical HUS (aHUS) is  also poor, with
a  mortality rate during outbreak of 25%, and progression to
CKD in  over half of the patients the  year after the diagnosis.13

Pathophysiological  mechanisms  involved  in
haemoproteins  induced  renal  damage

The main effect of haemoproteins on the  kidneys is their direct
tubule cell toxicity, regardless of what causes their release
(haemo- or myoglobinuria) (Fig. 2). Under normal conditions,
Hb binds to haptoglobin and forms the Hb–haptoglobin com-
plex in the plasma.14 This complex is too large to  be  filtered by
the glomerulus, and is  therefore broken down by the spleen,
bone marrow and liver. However, during intravascular haemol-
ysis, the massive release of Hb causes haptoglobin to be
consumed. As a  result, Hb remains in the plasma for longer
periods of time and is more  likely to dissociate into dimers,
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Fig. 2 – Mechanisms of renal damage caused by haemoproteins.

which are more  easily filtered by the glomerulus. Unlike Hb,
Mb  directly crosses the glomerular filtration membrane due to
its smaller molecular size.

Once in  the lumen of the tubule, the haemoproteins
can be reabsorbed by the proximal tubules through the
megalin/cubilin receptors complex,14 or even break down by
releasing the haem group and free iron, which also have
deleterious actions such as nitric oxide neutralisation, vaso-
constriction and ischaemia.15 The reduced bioavailability of
nitric oxide causes the deregulation of factors that control vas-
cular tone, such as endothelin-1, thromboxane A2, tumour
necrosis factor and isoprostanes.16,17 Hb and Mb  are also
powerful vasoconstrictors because they also react with nitric
oxide, as described in  diseases associated with intravascu-
lar haemolysis and rhabdomyolysis.18–20 When present in  the
lumen of the tubule, both Mb  and Hb can precipitate and
bind to the Tamm-Horsfall protein and give rise to RBC casts,
which cause intratubular obstruction in the distal nephron
segments.21 This obstruction is  assisted by the acidic pH  found
in urine, which increases the stability of the  links between the
haemoproteins and the  Tamm-Horsfall protein.22,23

Inside the tubule cells, the haemoproteins dissociate by
releasing globins and the haem group, which induces oxida-
tive stress, cell death and the production of inflammatory
cytokines and fibrosis, as  discussed in more  detail below.

Oxidative  stress

Haemoproteins present various redox forms and are an
endogenous source of reactive oxygen species.24 When
haemoproteins are captured by tubule cells, the haem group is
oxidised from Fe2+ to  Fe3+ and produces hydroxyl radicals.25

In the presence of peroxides, Fe3+ oxidises to Fe4+ and gen-
erates hydroperoxyl radicals, which are highly reactive and
contribute to the formation of new reactive oxygen species
in the kidneys.26,27 All of these radicals promote the lipid
peroxidation of plasma membranes and generate malon-
dialdehyde, which intervenes in the oxidation of proteins
and genetic material.4,28,29 This process leads to the pro-
duction of isoprostanes, proinflammatory cytokines and the

expression of adhesion molecules, which increases inflamma-
tory response.30

Inflammation

The haem group acts as a  TLR-4 agonist and induces
inflammatory response by activating the transcription fac-
tor NF-kB.31,32 After binding to the pattern recognition
receptor, Hb promotes the  activation of several signal
transduction pathways such as  c-Jun N-terminal, p38
and MAP kinases.33 Another involved pathway is  medi-
ated by the activation of the  NLRP3 (nitrogen permease
regulator-like 3) inflammasome, which is responsible for
releasing different cytokines and chemokines involved in the
monocyte/macrophage recruitment.34 The presence of proin-
flammatory macrophages (M1) has been reported in early
phases in experimental models of AKI due to the accumula-
tion of haemoproteins, which differ from anti-inflammatory
macrophages (M2) in later phases.35,36 These M2  macrophages
are found in  renal biopsies of patients suffering from rhab-
domyolysis, favism, paroxysmal nocturnal haemoglobinuria
and outbreaks of macroscopic haematuria associated with
IgAN.37–39

Cell  death

There have been reports of several types of cell death in
the epithelial tubule of patients and in experimental mod-
els associated with the accumulation of haemoproteins.4,39–43

Necrosis and apoptosis are the  types of death that have been
studied at a  greater depth.34,44–46 The molecular mechanisms
causing death by apoptosis are associated with mitochon-
drial dysfunction and an increase in  pro-apoptotic proteins
(BAX and BAD), as well as the activation of caspase-3, the
main effector caspase,34,47 and endoplasmic reticulum stress
proteins.48 Other types of cell death have been described
in  these diseases, such as  pyroptosis (cell death mediated
by caspase-1 which leads to DNA fragmentation and cell
lysis) and ferroptosis (iron-dependent cell death). Caspase-1
activation has been observed in experimental rat models of
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rhabdomyolysis,34 whereas the use of ferroptosis inhibitors
in these rats reduced cell death of proximal tubules.49 Lastly,
the accumulation of haemoproteins and their derivatives may
induce autophagy as a defence mechanism.46,50,51

Fibrosis

Renal fibrosis is another mechanism involved in renal damage
caused by haemoproteins. In fact, patients with SCA present
with renal fibrosis and increased TGF-� in urine, which is one
of the main profibrotic mediators.52 Even though fibroblasts
and tubule cells play a  very important role in the produc-
tion of extracellular matrix proteins, recent studies show
that macrophages may  increase profibrotic response due to
the production of mediators such as CTGF and TGF-� during
rhabdomyolysis.35,36

Renal tubules are considered as  the main sites of Hb
toxicity. However, the  presence of proteinuria has been
reported in experimental models of recurring exposure to
haemoproteins.53 There have also been reports of the presence
of focal segmental glomerulosclerosis in experimental models
of SCA54 and in  patients with chronic and recurring haemoly-
sis, such as paroxysmal nocturnal haemoglobinuria, HUS and
SCA.55 These patients develop proteinuria56 and suffer from a
chronic reduction of glomerular filtration.12,57 These data sug-
gest that there is a  link between intravascular haemolysis and
glomerular dysfunction. The physiopathological mechanisms,
however, are not clear. There are indications that the haemo-
dynamic changes linked to this disease may  be  responsible for
proteinuria and progressive renal damage; however, there is
no definitive proof for this theory.58 Given that focal segmental
glomerulosclerosis entails a loss of podocytes, these cells may
also suffer from haemoprotein-mediated injury. In this sense,
unpublished data from our group show that podocytes are
capable of capturing Hb, which induces oxidative stress and
causes these cells to  die, as  well as  a  loss  of proteins involved
in the glomerular filtration process such as  synaptopodin and
nephrin.

Defence  mechanisms  against  the  renal  toxicity
of haemoproteins

There are two types of defence mechanisms that work against
the harmful effects of haemoproteins: direct and indirect.
The direct mechanisms promote the catabolism of haemo-
proteins and by-products, whereas the  indirect mechanisms
reduce oxidative stress resulting from the presence of these
molecules, thus eliminating the reactive oxygen species or
repairing the possible damage caused (Fig. 3). Below is an anal-
ysis of each of these defence mechanisms relating to renal
damage caused by haemoproteins.

Direct  mechanisms

Haptoglobin

Haptoglobin (Hp) is  a glycoprotein found in high concen-
trations in plasma (0.3–3 g/l) and is  mainly secreted by
hepatocytes, although it is also synthesised in other tissues
such as kidneys. Hp irreversibly binds to  Hb and impedes
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the renal accumulation of haemoproteins.

its filtration in the kidneys59 and its translocation to the
endothelium,60 which counteracts its harmful effects.61 Hp
can also bind to Mb,  but with less affinity that it  does to
Hb.62 The Hb–Hp binding promotes the interaction and sub-
sequent internalisation of this complex through the CD163
receptor of the membrane, which is  present in monocytes and
macrophages.63 Hp  levels are highly reduced in patients with
chronic haemolysis, such as  SCA,64 because Hp breaks down
after being endocited.65 The importance of this protein for Hp
has been reported in  gene knockout studies in  rats, which
are more  sensitive to  damage from haemolysis.59 Studies in
animal models of SCA and rhabdomyolysis have shown that
the administration of Hp reduces vaso-occlusion,31 oxidative
stress66 and renal damage.60,67,68

CD163

CD163 is  a receptor found on the surface of circulating mono-
cytes and macrophages, whose main function is  Hb clearance
in tissue.63 CD163 has a high affinity for Hb–Hp complexes,
although it can also bind to  free Hb.69 The macrophages
that express CD163 have reduced hydrogen peroxide release
and important anti-inflammatory functions through the pro-
duction of IL-10 and HO-1 stimulation.70 Our group has
observed an increase in the macrophages expressing CD163
in renal biopsies of patients with massive haemolysis, such
as paroxysmal nocturnal haemoglobinuria37 and favism.39

The renal expression of CD163 was higher in areas where
iron had accumulated and where oxidative stress markers
were found. We have recently written about the presence of
CD163 in  the kidneys of patients and experimental models of
rhabdomyolysis.35 Since the anti-inflammatory and antioxi-
dant functions of CD163 are well known, these data suggest
that CD163 could play a  nephroprotective role in  response to
the renal accumulation of haemoproteins.

Haem  oxygenase

Haem oxygenase (HO) is one of the main defence mecha-
nisms in  situations of renal overload of Mb  and Hb. HO is the
enzyme responsible for breaking down the haem group, and
thus releasing biliverdin, Fe2+ and carbon monoxide,71 which
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are powerful anti-inflammatory and antioxidant molecules
that enhance the beneficial effects of HO.72,73 There are three
isoforms of HO (HO-1, HO-2 and HO-3) which differ in their
tissue distribution, regulation and function. Unlike other iso-
forms, the expression of HO-1 is  induced in  conditions of
oxidative stress, and is expressed in many tissues, including
the kidneys.74 The renal expression of HO-1 is  increased in
experimental models of haemoglobinuria and rhabdomyoly-
sis, as well as in patients with intravascular haemolysis.66,75,76

The deficiency of this enzyme in  patients with intravascular
haemolysis increases tubular and glomerular damage.77 Sim-
ilarly, animals used in gene knockout studies for HO-1 have
shown greater sensitivity to rhabdomyolysis, higher levels of
creatinine and higher mortality rates.78

Transferrin

Transferrin (Tf) is  a  glycoprotein that is  mainly secreted by
the liver, and which binds to  free iron to mitigate its adverse
effects.79 Depending on the iron concentration, the tubule
cells express the Tf receptor (TfR1), which plays an  essential
role in the metabolism of this molecule in the kidneys.80 Its
expression is regulated by the iron-regulatory proteins 1 and 2,
which are highly expressed in the proximal tubules and which
act as sensors of iron levels.81–83 Under normal conditions,
approximately 30% of the Tf iron-binding sites are saturated.
However, these levels increase in the  presence of iron accumu-
lation disorders,84 such as  severe haemochromatosis, in  which
case Tf saturation exceeds 60%.85,86 In addition, patients or
experimental models of hypotransferrinaemia have low levels
of Tf, which promotes renal overload of iron.87,88

Haemopexin

Haemopexin (Hx) is a plasma protein that complexes to the
haem group for its subsequent internalisation and hepatic
clearance through its binding to the LDL receptor-related
protein-1 (LRP1) receptor.89–91 In haemolysis, the Hb oxidises
and releases the haem group into the  bloodstream to later
bind to the serum albumin, which transfers the haem group
to the Hx and releases the complex in the liver. Once in  hep-
atocytes, the Hx–haem complex breaks down in lysosomes,
although a small amount of Hx is recycled and returned to the
bloodstream. Therefore, in  patients with haemolytic events,
the plasma concentrations of serum Hx are reduced92–95 as it
builds up in the renal cortex and increases its levels in urine.96

Hx plays a protective role against the harmful effects of the
haem group.31,32,97 Rats used in gene knockout studies for
Hx have a poor recovery of renal function after suffering an
intravascular haemolysis event, because they have a  greater
renal accumulation of iron and, therefore, higher oxidative
stress levels.98,99

Ferritin

Ferritin is a  protein consisting of 24 subunits, forming a  hol-
low spherical structure.100 Its primary function is to store iron,
so it has a protective capacity against the toxicity caused by
iron and haemoproteins. After the HO-1-catalysed reaction,
the iron is released from the haem group and is stored inside
the ferritin.101 The expression of ferritin is regulated by the
concentration of iron and the HO-1 activity.102 This protein
plays a crucial role  in diseases related to  haemoproteins, as

ferritin-deficient rats show notable renal damage,103 and it
is a good serum marker for SCA.104 Plasma levels of Tf  are
also higher in ferritin-deficient rats that are subjected to
rhabdomyolysis.103

Nrf2

Nrf2 is a transcription factor that controls the expression of
several antioxidant genes such as HO-1 and ferritin.105,106

Under normal conditions, Nrf2 is found in  the cytoplasm
bound to its repressor Keap1, which is  susceptible to changes
in the redox state and is  subjected to  proteolytic degrada-
tion through the proteasome. In the  presence of oxidative
stress, Nrf2 is  released from Keap1 and translocates to  the
nucleus, where it activates the expression of antioxidant
genes.107–112 The activation of Nrf2  has a  positive effect against
renal damage linked to the accumulation of haemopro-
teins in  experimental models and patients with haemolytic
anaemia.113–115

Indirect  mechanisms

This second group is  composed of antioxidant molecules and
various antioxidant enzymes.

Non-enzymatic  mechanisms

There are many molecules in  the body that have an  antioxi-
dant action, such as  vitamins, melatonin and bilirubin. These
molecules neutralise free radicals and are involved in the pro-
tection against renal damage caused by haemoproteins.

Vitamins are an  important antioxidant group. One such
example is vitamin C, which reacts with the superoxide anion
and lipid peroxides, thus reducing the  oxidative stress induced
by the in  vitro116 and in  vivo117 RBC lysis. Similarly, treat-
ment with vitamin C was  effective in a context of AKI caused
by haemoglobinaemia in a  patient with glucose-6-phosphate
dehydrogenase deficiency.118 The levels of vitamin C decrease
after the development of rhabdomyolysis, and its admin-
istration has partially reduced histological disorders and
renal function in  experimental models of rhabdomyolysis.119

Vitamin E is another important vitamin because it plays a
significant role  in maintaining the redox balance and the
integrity of cell membranes, acting on peroxyl and hydroper-
oxyl radicals. The administration of vitamin E  inhibited the
RBC lysis of patients suffering from paroxysmal nocturnal
haemoglobinuria, which suggests that this vitamin is  an effec-
tive treatment for these patients.120,121 Vitamin E has not
been as effective as vitamin C, however, in the treatment of
rhabdomyolysis.122

Melatonin is a  hormone secreted by the pineal gland
which has several antioxidant properties, as  it neutralises
free radicals such as hydrogen peroxide, the  hydroxyl radi-
cal, peroxynitrite and the superoxide anion. This molecule
also stimulates the  expression of other antioxidant molecules,
such as  superoxide dismutase, glutathione peroxidase and
glutathione reductase. Several studies have shown that this
hormone plays a protective role in models of AKI caused
by rhabdomyolysis or intravascular haemolysis by reducing
tubular necrosis and lipid peroxidation associated with these
conditions.117,123



n e f r  o l  o g i  a. 2 0 1 8;3 8(1):13–26 19

Table 1 – Clinical trials in diseases associated with the renal accumulation of haemoproteins.

Disease Mode of action Trial treatment Clinical trial number

Treatment of underlying
disease

HUS Inhibition of
complement

Eculizumab NCT00838513
CCX168 NCT02464891

Antibody against MASP-2 OMS 721 NCT02222545
Paroxysmal nocturnal
haemoglobinuria

Inhibition of
complement

Conversin  NCT02591862
TT30 NCT01335165
LFG316 NCT02534909
APL2 NCT02588833
ALN-CC5 NCT02352493

Sickle-cell anaemia Covalent modifiers
of haemoglobin

SCD-101 NCT02380079
ICA-17043 NCT00294541

Increase in foetal
haemoglobin
production

Decitabine NCT01375608
Vorinostat NCT01000155
Panobinostat NCT01245179

Improvement of
endothelium function

Simvastatin NCT00508027
Sodium nitrate NCT00095472
Ambrisentan NCT02712346

Prevention of  damage
caused by haemoproteins

Rhabdomyolysis Elimination of
myoglobin through
renal replacement
therapies

Continuous therapies NCT00391911

High cut-off HicoRhabdo filters NCT01467180

Immunoabsorption (CytoSorb®)  NCT02111018
Decreased oxidation N-acetylcysteine NCT00391911

Malaria Decreased oxidation Paracetamol NCT01641289
Beta thalassaemia Iron-chelating

agents
Deferasirox NCT00560820
Exjade-desferal NCT00901199

Glutathione, in  its reduced state (GSH), is a  powerful
cell antioxidant that can be oxidised to  glutathione disul-
fide (GSSG) through several enzymatic reactions. Several
experimental models of myoglobinuria and haemoglobin-
uria, as well as  studies in patients with HUS and SCA,
show decreased levels of GSH in  the kidneys.117,123–128 The
depletion of GSH increases toxicity mediated by oxidative
stress in these diseases, because, by restoring the GSH
levels, treatment with N-acetylcysteine reduces histologi-
cal disorders and inhibits cell death associated with these
conditions.129,130

Enzymatic  mechanisms

This group includes molecules with enzymatic activity that
reduce the content of intracellular reactive oxygen species
and, therefore, protect cells from oxidative damage. Super-
oxide dismutase (SOD) is  able to dismutate O2− in  O2

and H2O2. For the elimination of H2O2, there are other
enzymes with peroxidase activity. These include catalase,
glutathione peroxidase (GPx) and reduced thioredoxin (Trx).
Catalase is  an oxidoreductase that catalyses the decom-
position reaction of H2O2 in  O2 and water. GPx catalyses
the decomposition of H2O2 through the  oxidation of GSH
to GSSG and water. The GPx, catalase and SOD activ-
ity is reduced in  experimental models of intravascular
haemolysis117 and rhabdomyolysis.125,128,131–134 Furthermore,
the plasma levels of GPx and SOD show a negative cor-
relation with albuminuria in patients with SCA.135 Lastly,
Trx protects from renal damage associated with rhab-
domyolysis through the reduction of oxidative stress and
inflammation.136

Treatments

There is currently no specific treatment for preventing the
damage induced by ferroportins in their different forms of
clinical presentation. The alkalisation of urine may  be  ben-
eficial by reducing the  dissociation of the iron found in
haemoproteins. This alkalisation can be  carried out with oral
bicarbonate, while monitoring the  urine and serum pH lev-
els. However, no clear benefits have been reliably proven. The
use of calcium channel blockers in experimental models has
shown an  increase in the urinary excretion of iron by mech-
anisms that remain unknown, which results in a decrease in
the renal accumulation of iron.137

The use of iron-chelating agents in diseases associated
with the accumulation of this molecule reduces oxidative
damage138 and also avoids iron deposition.139 Prophylactically
administered deferoxamine reduces oxidative stress resulting
from the presence of Hb.140 Iron-chelating agents reduce the
toxicity produced by the  massive deposition of iron in multi-
transfused patients,141 although recent studies question their
nephroprotective capacity in haemoglobin-induced AKI.142 It
should be noted that certain iron-chelating agents, such as
deferasirox143 and deferoxamine,144 are potential nephrotoxic
agents, requiring strict monitoring during their use.145

Prophylactic treatment with antioxidants such as
N-acetylcysteine has yielded positive results in pre-
venting tubular damage secondary to myoglobinuria
or haemoglobinuria.146 Other antioxidants, such as
acetaminophen, were also effective.27,147 The possible
protective role of vitamin E148 and vitamin C,27 in  addition
to polyphenols,149 flavonoids128,150–152 and l-carnitine,153 has
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also been investigated, yielding disparate results, as men-
tioned earlier. Recent studies have also addressed the use of
stem cells and have produced positive results, especially in
models of rhabdomyolysis.154

Clinical  trials

Ongoing clinical trials for the treatment of disorders caused
by haemoproteins are focused on two aspects. First, treating
the underlying disease to prevent the release of haemopro-
teins into the plasma, and second, mitigating the damage
potentially caused by haemoproteins once they are released.
As such, in diseases such as  aHUS and paroxysmal noctur-
nal haemoglobinuria, the  majority of trials test drugs that act
on the complement system, mainly eculizumab, or  even new
molecules that act in other ways. These include: CCX168 (C5aR
antagonist); conversin (protein that prevents action on its
C5 convertase); TT30 (ALXN1102 and ALXN1103; recombinant
proteins containing Factor H domains 1–5  and which reduce
the complement’s convertase activity and activate Factor I);
LFG316 (anti-C5 monoclonal antibody); APL-2 (C3 inhibitor)
and ALN-CC5 (hepatic inhibitor of C5 synthesis) (Table 1). In
aHUS, antibodies are also being developed that work against
MASP-2, known as OMS  723. In SCA there are trials involving
drugs such as  SCD 101 and ICA-17043 (which stop red blood
cells from turning into falciform cells); decitabine, vorinos-
tat and panobinostat (to increase foetal haemoglobin); and
statins, sodium nitrate and ambrisentan (type A-selective
endothelin receptor antagonist) to  improve endothelial dys-
function, maintain good tissue perfusion during crises and
avoid the rupture of red blood cells. SCD 101 has also  been
used in beta thalassaemia.

Once haemoproteins are released into the plasma, the
trials focus on two  strategies. The first strategy is to  try
to clear these molecules from the plasma. This has been
done in several trials in patients suffering from rhabdomy-
olysis who  require renal replacement therapy, in  which the
effects of continuous techniques, high cut-off haemofilters
and immunoabsorption techniques (CytoSorb®) have been
analysed in order to remove  Mb  from plasma as quickly
as possible. The second strategy is based on reducing their
toxic effect. To do this, efforts are being made to pre-
vent haemoglobinuria-induced oxidation in  malaria using
paracetamol, and myoglobinuria-induced oxidation using
N-acetylcysteine. Trials are also under way that use iron-
chelating agents (deferasirox or a combination of exjade and
desferal) in thalassaemia to prevent iron deposition in target
organs.

Conclusion

The accumulation of haemoproteins in the kidneys is  nephro-
toxic. There is  evidence showing the short-term adverse
effects and the chronic loss of renal function. Even though sev-
eral adverse effects have been reported about these molecules,
we must continue to determine the pathogenic mechanisms
of haemoproteins to identify new therapeutic targets and
prevent their adverse effects. In this sense, podocytes may
constitute new cellular targets of the harmful effects of

haemoproteins. From a  therapeutic perspective, the data cur-
rently available are primarily based on studies in animal
models. Therapeutic measures aimed at reducing myoglobin-
uria or haemoglobinuria will be hugely important to prevent
renal damage caused by these molecules.
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