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Introduction

40 % of patients with juvenile insulin dependent

diabetes mellitus (IDDM) develop nephropathy within

10-20 years of diagnosis 1, 20 % of middle aged, non-

insulin dependent diabetes mellitus (NIDM) patients

are found to have nephropathy  on ly  5-10

years after the initial  diagnosis 2 .  Generally the patients

with early proteinuria are those who have had poor

glucose control 3, a slightly higher blood pressure

(135: 85 mm Hg) and more marked retinopathy. They

are those who soon have an increase of their GFR

above normal and so they have  hyperfiltration. They

tend also to have  a higher cholesterol, a higher LDL

and VLDL, and elevation of their plasma fibrinogen 4.

After 5-10 years of diabetes we might detect microal-

buminuria, which means an albumin excretion rate of

20-200 micrograms/minute  in an overnight urine, or

30-300 mg/24 hrs in a complete collection. Then after

another 5-10 years they will develop albumin stick po-

sitive proteinuria. The clinical sequence of the deve-

lopment of diabetic nephropathy was described  in de-

tail by Castiglioni and Savazzi 5.

When biopsies are obtained from diabetic patients,

the changes that are typical are ’ the hyalinosis of the

afferent and efferent arterioles of the glomeruli 2 ,  the

thickening of the basement membranes of the glome-

rular capillaries 6 ,  and 3 the increased  volume  of me-

sangial cells  leading to an increase in volume of glo-

meruli. Once the expansion of the mesangium is

more than 37 % of the glomerular volume, there is

pressure on the capillaries with loss of filtration surfa-

ce 7, so that thereafter there is functional  renal im-

pairment. Ultimately there is closure and obsolence

of glomeruli, called  glomerulosclerosis. Those pa-

tients with severe glomerular lesions have  hyperten-

sion and reduced  creatinine clearance, and there is

renal interstitial  fibrosis. There is evidente  that this fi-

brosis develops concurrently with the increased frac-

tional mesangial volume  8.

Clomerular Capillary Hipertension and

Hyperfiltration

In rats that are made diabetic by means  of strepto-

rotocin and kept alive  by injections of insulin there

is a decreased resistance of the afferent arterioles, so

that there will be increased pressure in the glomeru-

lar capillaries and there is hyper-filtration 9 ,  which is

determined by the increase in plasma flow. The fac-

tors that determine hyperfiltration have  been  discus-

sed by Bank 10 . Hyperglycaemia is a first considera-

tion 11 but so is a high protein intake 12. A very high

glucose (20 mM) inhibits cytosolic calcium signaling

in cultured mesangial or vascular smooth muscle

cells  11b. Hence  there is vasodilatation.  Sodium intake

is also relevant. During hyperglycaemia induced  os-

motic flow, there is increased reabsorption of sodium

in the proximal tubules 13. In subjects who are using

insulin, insulin is known to increase sodium reab-

sorption  in the tubules  14. The pituitary of diabetic pa-

tients secretes large pulses of growth hormone, pos-

sibly as a result of raised glucose in the CSF, and

growth hormone increases GFR and renal blood

flow 15 by the intermediary of insulin growth factor

IGF-1 16, In any case there is increased formation of

nitric oxide vasodilator in the afferent arterioles in

diabetes 17. The hyperglycaemia also results in pro-

duction of vasodilator prostaglandins in the afferent

artérioles 18. This production of prostaglandins seems

to depend on polyol formation, because it is arrested

when an aldose reductase inhibitor is used  1 9 .

Hyperglycaemia determines also an increased pro-

duction of thromboxanes at the vascular pole  of dia-

betic kidneys and thus an increased tone in the effe-

rent arterioles 10. Indeed one knows that urinary

thromboxane excretion is increased 10, and that pro-

teinuria is ameliorated in animals  given thromboxane

synthetase inhibitor 20 Yet another consideration is

that hyperglycaemia leads to formation of excess

diacylglycerol withi cells  and thus there is activation

257



E. N. WARDLE

of protein kinase C. Excess  protein kinase C is known

to mediate  vascular permeability of the endothelium

of blood vessels 21, In fact it mediates down-regula-

tion of thromboxane receptors in diabetic glomeruli

and mesangial cells  22, Angiotensin II receptors are li-

kewise downregulated. In all this will explain the

predominant vasodilatation in the afferent arterioles

and so the hyperfiltration. The data in humans indi-

cates some  relation between early hyperfiltration and

the development of diabetic renal disease. Thus in

one study of children a GFR in excess of 125 ml/min

1.73  m2 conferred a predictive value for nephropathy

of 53 % 23. Yet one must note that in that study half of

the hyperfiltering subjects did not develop nephro-

pathy during the period of follow-up. Thus hyperfil-

tration is not a highly sensitive predictive parameter.

NIDDM patients also show hyperfiltration 2 4 .  It is

common  in Pima Indians 25.

It has been suggested that the patients who pro-

gress  to diabetic nephropathy are those with a family

predisposition to hypertension 26. Hypertension will

raise intracapillary pressures and worsen proteinuria.

In some populations genetic susceptibility to essential

hypertension can be linked to increased erythrocyte

sodium-lithium counter-transport. There is a similar

link with diabetic nephropathy 27. However one must

emphasize that this does  not apply in all  populations

that have  been  studied 28 .

Hypertrophy of the Kidneys

Soon after the onset of diabetes the size of the kid-

neys increase.  All the glomeruli and their nephrons

hypertrophy 29. In the rat this hypertrophy precedes

the increase  of GFR 3 0 .  The finding of increased pro-

tein kinase C activity in the glomeruli is relevant to

growth 31. Both hyperglycaemia and the growth fac-

tors work via pkC activation. It has been  shown that

the action of EGF, epidermal growth factor, works

through the intermediary of increased protein kinase

C activity 32. EGF is produced in the distal tubules  and

ascending loops of Henle 33, There is increased excre-

tion of EGF in the urine of streptozotocin diabetic

rats 34 ,  The effects of growth hormone are known to be

mediated by IGF-1 and this is anabolic and it is invol-

ved in hypertrophy of diabetic kidneys 35. In short term

studies the somatostatin analogue, octreotide, which

suppresses growth hormone secretion, stops the early

renal hypertrophy of diabetic rats 3 6 .  Yet  in the long-

term it does not 37. Hyperglycaemia stimulates produc-

tion of TGFbeta in cultured proximal tubules 38. It is

therefore possible that it could contribute to hyper-

trophy of the tubules, albeit how TGFbeta behaves

depends on the phase of development.

There has to be a metabolic component  to the hy-

pertrophy that stems from the hyperglycaemia. Thus

it has now been  demonstrated that in the kidneys of

diabetic rats there is an increase  of glucosylceramide,

a glycosphingolipid precursor. Furthermore an inhibi-

tor of glucosyl-ceramide  prevents the renal hyper-

trophy 39.

Vascular Changes  in Diabetes

Hyalinosis of blood vessels is recognised as an ad-

verse feature. It means  that the vessel walls are per-

meable to molecules as large as fibrinogen. It implies

that glomerulosclerosis will  develop 40. When it oc-

curs  leakiness of the postglomerular peritubular capi-

Ilaries  leads to protein accumulation in the intersti-

tium of the kidneys 41. That will  lead to renal

interstitial  fibrosis. The process  is probably facilitated

by iron that comes from transferrin in the urine of

diabetics 42.

What causes increased endothelial cell  permeabi-

lity in diabetes? Firstly metabolism of glucose  to

diacylglycerol that mediates the formation of excess

protein kinase C has been  mentioned 21. Secondly a

role for conversion of glucose  to sorbito1  via aldose

reductase  enzyme is probable, because  the inhibitor

sorbinil can reduce vascular permeability 43. Thirdly

there is a definite role for lipid peroxides, which arise

when there is free radical formation linked to non-

enzymic glucosylation of proteins 44-45 .  The free radi-

cals  arise from auto-oxidation reactions of sugars and

sugar adducts to proteins and by auto-oxidation of

unsaturated lipids adjacent to altered membrane pro-

teins. Monocytes of diabetics often produce

superoxide anions and thus hydrogen peroxide 4 6 .

Polymorphonuclear leucocytes in serum that is high

in cholesterol also form superoxide anions 47. It is

usual for the low density lipoproteins of diabetics to

become  oxidised 48. Apart from that one can gauge

free radical activity in diabetic rats by their expiration

of pentane 4 9 , and one can measure  plasma lipid pe-
roxides and lipid peroxidation of kidneys in diabetic

rats 50,

In human  studies severa1  groups have  now related
lipid  peroxides in plasma 51 (measured by the thiobar-

bituric acid reaction) to endothelial cell  damage as

shown by a raised plasma von Willebrand factor. The

patients with raised plasma malonyldialdehyde (indi-

cative of lipid peroxides) and raised plasma von

Willebrand factor were also  those who had microal-

buminuria 52-54.. Furthermore patients with raised plas-

ma MDA were those with tubular damage as shown

by increased excretion of NAG, N-acetyl-glucosami-

nidase, in their urine 54. When sought in the correct
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manner, marked evidence of tubular damage  will be

found in many  diabetics 55,56.

Oxidised LDL has altered properties 57 that are per-
tinent to atherogenesis 58. Oxidised LDL is chemotac-

tic for monocytes and it is taken up by macrophages

in arterial walls to cause their cholesterol  enrichment

and foam cell  formation. Oxidised LDL causes plate-

let aggregation. It stops the action of nitric oxide and

so it can promote  vasoconstriction in small arterioles.

Oxidised LDL can be cytotoxic for endothelial cells.

In lesser doses it causes the expression of «tissue  fac-

tor» thromboplastin on endothelial cells 59,  so that

there is a thrombotic tendency in small arterioles. It

also prevents activation of protein C and so it thwarts

protective fibrinolysis. The severe atheroma that

many diabetics develop has implications for kidney

function. For example platelet aggregates forming in

the aorta will be swept into the glomeruli to cause le-

sions like  focal segmental sclerosis  60. Also many dia-

betics do have renal artery stenoses. Recognition of

this fact is necessary before  the prescription of ACE

inhibitors.

Non-enzymatic glucosylation of proteins produces
ACEP, advanced glycosylation end-products 45.  They

accumulate in the tissues of diabetics 61 and will un-

doubtedly play a role in nephropathy. Mesangial

cells express AGEP receptors 6 2  and when stimulated

by AGEP they form basement membrane proteins 63.

AGEP have  oxidising potential 64,  and when they ac-

cumulate  in blood, as they do in terminal renal failu-
65 they encourage procoagulant change  on the en-

dothelial cells 66,  both directly and via release of
cytokines like ll-1 and TNFa 67.

Glycosaminoglycans and Collagen

There is poor synthesis of heparan sulphate proteo-
glycans by the renal glomeruli in diabetes mellitus 68.

There is a genetic  factor involved in different strains

of rats 71, and it has also been  suggested that the var-

ying liability to diabetic vascular disease in humans 69

might also depend on some factor l ike this.

Hyperglycaemia also stops proteoglycan synthesis by

mesangial cells 7 0 .  When there is poor diabetic con-

trol there is inhibition of the N-acetyl heparan  dea-

cetylase enzyme that is required for heparan sulphate

proteoglycan synthesis. Furthermore there is loss of

heparan sulphates in the urine at the onset of diabe-

tes in rats 72. When biopsies from human  diabetic

nephropathy were examined, a marked reduction in

reactivity to anti-heparan  sulphate proteoglycan anti-

bodies was observed, but one has to acknowledge

that these were cases of quite advanced disease 73.

The importance of the heparan  sulphates is that the

negative charges of their sulphate groupings on en-

dothelial cells, and in the basement membranes of

the glomeruli and on the mesangial cells, repel nega-

tively charged albumin molecules, so that their filtra-

tion is prevented. So it would seem that loss of hepa-

ran sulphates at such  an early stage in diabetes 74

could account for the onset of micro-albuminuria.

Indeed  Gambaro et al. 75 have show.n  that, when
streptozotocin diabetic rats are given injections of eit-

her low MW heparin or dermatan sulphate glycosa-

minoglycan, there was inhibition of mesangial cell

expansion and thickening of the glomerular base-

ment membranes was reduced.  The heparan  sulpha-

tes of the basement membrane are essential for the

integrated binding of the other components  like the

type IV collagen  and laminin.

Another factor that contributes to proteinuria must
also be the poor synthesis in diabetes 76 of the negati-

vely charged sialoproteins that line the slit pores bet-

ween the epithelial cells.

The basement membrane width expands by about
30 % during the first 5 years of diabetes and by the ti-

me of clinical nephropathy its width has doubled 6 .

Not only is there loss of negative charges  73 but the

closely woven structure must be disorganised, per-

haps by the addition of glucoadducts in the process

of non-enzymic glucosylation 61,77-79,  surely by the ef-

fect of ACE products causing collagen  browning 80,

and surely as a result of the loss of heparan sulphate

proteoglycans 81. When in an experimental situation

aminoguanidine is used to decrease  AGE products  8 2 ,

the proteinuria is reduced 83 .

A high ambient glucose (30 mM)  increases the
synthesis of type IV collagen  by cultured endothelial,

mesangial and epithelial cells 84-85.  Undoubtedly the

ability of high glucose  to drive protein kinase C may

explain this 86. However one should also be aware
that lipid peroxidation enhances the synthesis of type

I V collagen  Also it can be shown in vivo that

thromboxanes play a role, because when thromboxa-

ne synthase inhibitors are used  basement membrane

thickening and mesangial matrix expansion is redu-

ced 87,88. The basic fact  that high ambient glucose

causes increases messenger RNA for type IV

collagen 89,90
 has now been  verified by many groups.

Likewise proximal tubules that are exposed to gluco-

se will  synthesise type IV collagen  of tubular base-

ment membranes 91,  It is reported that sorbinil pre-

vents the biosynthesis 91.

Clearly the altered structure  of the GBM explains
the albuminuria and the loss of charge  selectivity that

can now be measured by study of the clearance of

IgG/lgG4  92,93.  As can be shown by dextran clearan-

ces, there is initially no increase  of pore size at a time

when there is substantial loss of albumin and IgG,
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but pore size is increased later. It is relevant to note

that glycated albumin readily leaks through the glo-

meruli and it is not reabsorbed by the proximal tubu-

les 94.  In any case.there  is often proximal tubule  dys-

function as shown by lysozymuria 95.

The  Altered Mesangia of Glomeruli of Diabetics

tion by mesangial CelIs  is increased 103 Prostaglandins

inhibit cell  oroliferation 9 6 .  Potential  high glucose  in-

The feature that is so typical of diabetes is the early

mesangial cell  expansion that is followed years later

by mesangial sclerosis 5 , 7 .  Thus the picture differs

from the glomerulonephritides in which one often ex-

pects to see mesangial cell  proliferation that is cau-

sed by growth factors 96.  By now one can list various

experimental observations that explain why the me-

sangial cells do not proliferate. 1) A high ambient

glucose (20 mM) inhibits mesangial cell  proliferation,

although it does  promote  fibronectin synthesis 9 7 .  2)

Although a high glucose  increases  protein kinase C in

mesangial cells 9 8  and thus formation of extracellular

matrix fibronectin, laminin and type IV collagen,

high glucose  also inhibits cytosolic calcium signa-

Iling 9 9 .  Hence  the cells will  tend to be relaxed and

spread out rather than contractile. 3) Non-enzymatic

glucosylation and formation of ACE products  causes

mesangial expansion and inhibition of mesangial cell

prol i ferat ion 4) On account of the aldose reducta-

se content  of the mesangia, exposure to high glucose

will result in formation of polyols  101 and there will be

a reduction of the myoinositol of the cells 102. 5)

When there is a high glucose,  prostaglandin produc-

We know from histology that glomerulosclerosis

(mesangial sclerosis) will ultimately develop and that

follows increasing deposition of fibronectin and type

IV collagen. High glucose  leads to loss of proteogly-

cans 111 and it promotes  formation of fibronectin and

collagen  9 7 - 9 8 ,  albeit one set of studies showed that

over a long time high glucose suppresses collagen

production 111. That might be due to ascorbic acid  de-

pletion, since that is well recognised in diabetes.

Certainly it seems that hyperlipidaemia will media-

te glomerulosclerosis, as in other situations 112.

Immunohistochemical studies of the localisation of

apolipoproteins in glomeruli has shown that fixation

of apolipoprotein B with apoE  gives rise to more glo-

merulosclerosis and interstitial  scarring 113 .

What more does  one need to know? Since mice

transgenic for bovine growth hormone1 1 4  develop
mesangial cell  proliferation by 4 weeks, mesangial

sclerosis by 20 weeks and glomerulosclerosis by 36

weeks, what are the mediators of the response?

Presumably PDGF autocrine production in glomeruli

is involved at the early stage 110. Since TGFbeta is the

mediator of glomerulosclerosis in most situations,

one has to assume  that this is also the case in diabe-

tic nephropathy 110, Indeed it does seem that high glu-

cose stimulates autocrine production of TGFbeta by

mesangial cells 104 .

Furthermore the release  of TGFbeta  stops mesan-
gial  cell  proliferation but increases  the deposition of

mesangial matrix 115.

duced  mesangial cell  proliferation is inhibced  also  by

transforming growth factor beta 1 0 4 .  6) High glucose

can inhibit the cell  proliferative effect of ICF-1 105. 7)

Low density lipoproteins at a concentration of only

10 g/ml stimulate proliferation of mesangial cells and

yet at a level  of 1 00 -500  g/ml, as would be the case

in any hyperlipidaemia, there is inhibition 106. Such

LDL will stimulate superoxide production by mesan-

gial cells and thus may become oxidised 107. 8)

Oxidised LDL reduces release  of growth factors from

macrophage like cells 108 .  Oxidised LDL bind very
well to mesangial cells and inhibit their proliferation

at concentrations as low as 10-25 g/ml  1 0 9 .

By now it has been shown in rats with diabetic

nephropathy and in humans that TGFbeta values are

elevated in the glomeruli 115. This is a clear  indication

Final Synopsis

that TGFbeta mediates glomerulosclerosis.

Although these observations make good biochemi-

cal sense,  they are mainly based on in vitro studies.

When RNA messengers are looked at in the early sta-

ges of diabetes in Sprague-Dawley rats those for

TNFalpha,  basic fibroblast growth factor and PDGF-B

chain and for transforming growth factor beta are in-

creased 110.  Indeed their levels are reduced by insulin

therapy 110. Nevertheless rats are not as hyperlipaemic

as man might be.

Secondly Cohen and Ziyadeh 117 have examined

the effects of glycosylated proteins on glomerular

mesangial cells. They have  shown that glycosylated

proteins (i) stop proliferation of mesangial cells, and

(ii) stimulate the mesangial cells to transcribe the ge-

nes for type IV collagen. So growth of mesangial

cells is inhibited, as was recorded by Crowley et

al. 100,  and type IV collagen  production occurs in dia-

betic glomeruli. One should note that when glycated

proteins are taken up by mesangial cells, there is in-

tracellular production of hydrogen peroxide 64,118

We do know that lipid peroxidation is a stimulus to

collagen  production 6 6 ,  In fact  Cohen and Ziyadeh 

used glycated serum proteins that had no cross-links

and showed no AGE fluorescente,  whereas Crowley

et al. 1 0 0  specifically used fluorescent cross-linked

AGE products.  Thus either product can influente  the

genes for collagen.

262



CELL BIOLOGY OF DIABETIC NEPHROPATHY

Thirdly  there is more information on the contra-

versial  topic  of whether or not nitric oxide produc-
tion by endothelium is increased o decreased in dia-

betes. The answer is that NO production can be

increased or decreased depending on the vascular

bed. Nitric oxide production is increased in the affe-
rent arteriales of diabetic glomeruli and thus this is a

factor that explains vasodilatation and hyperfiltra-

tion. On the other hand it has been  shown that car-

bamvlcholine induced cyclic GMP is decreased wit-

hin isolated diabetic glomeruli in parallel with

hyperglycaemia induced increases  of protein kinase

C 119. Furthermore in that situation thromboxane for-

mation is increased88 and this is another factor 120

that contributes to production of glomerular extrace-

Ilular matrix proteins.

Hence hyperglycaemia causes non-enzymatic gly-

cosylation of proteins and they reduce mesangial cell

proliferation but cause mesangial expansion and type
IV collagen  production. Also hyperglycaemia indu-

ced protein kinase C, and hence  thromboxanes, cau-

se matrix deposition.
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