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La transcriptómica del fracaso renal agudo revela una
relación entre inflamación y envejecimiento
RESUMEN
No existen estrategias terapéuticas y fisiopatológicas para
el fracaso renal agudo (FRA), por lo que los niveles de mor-
talidad continúan siendo elevados. Además, la enferme-
dad renal crónica (ERC) predispone a sufrir FRA y el FRA, a
su vez, contribuye a que la ERC avance. Recientemente,
una estrategia transcriptómica reveló una relación entre el
FRA, la inflamación y la regulación del envejecimiento. Un
análisis transcriptómico de modelos experimentales de
FRA reveló un aumento de la expresión renal de Fn14 y la
quimiocina transmembrana CXCL16, así como un descenso
en la expresión de la hormona Klotho antienvejecimiento
secretada por el riñón. Fn14 es el receptor de la citoquina
tumor necrosis factor-like weak inducer of apoptosis (TWE-
AK), miembro de la superfamilia de factor de necrosis tu-
moral. En los riñones con FRA, existía una correlación po-
sitiva entre Fn14 y la expresión de ARNm de CXCL16 y una
correlación inversa entre Fn14 y el ARNm de Klotho. El lu-
gar donde se da la expresión in vivo de Fn14, CXCL16 y Klo-
tho es las células tubulares. La investigación en las relacio-
nes entre estas tres moléculas reveló que la activación de
Fn14 por TWEAK provocó la inflamación mediante la se-
creción de quimiocinas como la CXCL16 en células tubula-
res, tanto en cultivo como in vivo. Además, la activación
de Fn14 por TWEAK disminuyó la expresión de ARNm de
Klotho y de proteína, en cultivo e in vivo. Curiosamente,
tanto la activación TWEAK de la trascripción de ARNm de
CXCL16 y la supresión de la trascripción de ARNm de Klo-
tho estuvieron mediadas por el factor de transcripción NF-
κB. Como conclusión, la unión de TWEAK y Fn14 es un ele-
mento clave en promover de la activación mediada por
NF-κB de las vías de inflamación y en la supresión de las
vías antiinflamatorias y antienvejecimiento. Esta informa-
ción puede influir en las futuras estrategias terapéuticas
para el FRA y la inflamación/envejecimiento.

Palabras clave: Fracaso renal agudo. Envejecimiento.
Enfermedad renal crónica. Inflamación. Klotho. TWEAK.

ABSTRACT

There are no pathophysiolgical therapeutic approaches to

acute kidney injury (AKI) and the mortality remains high. In

addition chronic kidney disease (CKD) predisposes to AKI

and AKI contributes to progression of CKD. Recently a trans-

criptomics approach unveiled a relationship between AKI,

inflammation and the regulation of ageing. A transcripto-

mics analysis of experimental AKI revealed increased kidney

expression of Fn14 and transmembrane chemokine CXCL16,

as well as a decreased expression of the kidney-secreted

anti-ageing hormone Klotho. Fn14 is the receptor for tumor

necrosis factor-like weak inducer of apoptosis (TWEAK), a

member of the TNF superfamily. In AKI kidneys there was a

positive correlation between Fn14 and CXCL16 mRNA ex-

pression and an inverse correlation between Fn14 and Klo-

tho mRNA. Tubular cells were the site of Fn14, CXCL16 and

Klotho expression in vivo. Research on the relationships bet-

ween these three molecules disclosed that TWEAK activa-

tion of Fn14 promoted inflammation through secretion of

chemokines such as CXL16 in tubular cells in culture and in

vivo. Furthermore, TWEAK activation of Fn14 decreased ex-

pression of Klotho mRNA and protein in culture and in vivo.

Interestingly, both TWEAK activation of CXCL16 mRNA

transcription and suppression of Klotho mRNA transcription

were mediated by the NFκB transcription factor. In conclu-

sion, TWEAK engagement of Fn14 is a central event promo-

ting NFκB-mediated activation of inflammation pathways

and suppression of anti-inflammatory/anti-ageing path-

ways. This information may influence future therapeutic ap-

proaches to AKI and inflammation/aging.

Keywords: Acute kidney injury. Aging. Chronic kidney
disease. Inflammation. Klotho. TWEAK.

ACUTE KIDNEY INJURY AND CHRONIC KIDNEY DISEASE

Acute kidney injury (AKI) is a syndrome characterized by

tubular injury and a sudden drop in glomerular filtration. Our
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current understanding of the pathophysiology of AKI is

incomplete and this accounts for the lack of specific therapy.

One key feature that has emerged in recent years is the close

relationship between AKI and chronic kidney disease

(CKD).1 Thus, CKD is the main risk factor for AKI and AKI

contributes to progression of CKD. This suggests that AKI

and CKD share pathogenic factors: from a pathogenic point

of view CKD may be considered a low level, persistent AKI.

Since pathogenic events are magnified in AKI and AKI has a

shorter time course, AKI has advantages as a model for the

identification and assessment of pathogenic factors. In this

regard, proposed biomarkers of AKI are also altered in CKD,

including Klotho.2,3

TRANSCRIPTOMICS

High throughput techniques such as transcriptomics and

proteomics, may help identify novel potential pathogenic

factors, therapeutic targets and biomarkers in a non-biased

way.4-6 Transcriptomics is a high throughput technique that

allows the identification of thousands of differentially

expressed candidate genes. Such patterns of expression may

themselves be used for diagnostic or prognostic purposes.

Bioinformatics and biostatistics tools allow to manage

thousands of genes simultaneous and help to prioritize

molecules for further confirmatory studies. Novel

therapeutic targets may be uncovered. We recently used a

transcriptomic approach to identify new genes involved in

AKI that could serve as biomarkers or therapeutic targets.7,8

This approach has successfully identified new players in

diabetic nephropathy such as the lethal cytokine TRAIL; the

MIF receptor CD74 and the intracellular lethal protein

BASP1.9-12

TWEAK AND FN14

Tumor necrosis factor-like weak inducer of apoptosis

(TWEAK, Apo3L, TNFSF12) is a member of the tumor

necrosis factor superfamily (TNFSF).13-15 Other members of

the family include TNF and Fas ligand, both of which play a

key role in kidney injury.16-18 TNFSF ligands bind to one or

more members of the TNF receptor superfamily

(TNFRSF).19,20

The human TWEAK gene encodes a type II transmembrane

glycoprotein. The TWEAK C-terminal extracellular domain

contains the TNF homology domain that mediates self-

trimerization and receptor-binding.13 The N-terminal

intracellular domain contains several nuclear localization

sequences (NLS)13,21-23 and a furin recognition site, suggesting

that TWEAK can be cleaved.24 Most cells can express full-

length membrane-anchored TWEAK (mTWEAK) and

soluble TWEAK (sTWEAK).24,25 sTWEAK is formed by

proteolysis of membrane TWEAK.13,25,26

Both sTWEAK and mTWEAK bind and activate fibroblast

growth factor-inducible-14 (Fn14, TWEAK receptor,

TNFRSF12A, CD266).24,27-29 Fn14 was initially described in

fibroblasts as a growth factor-regulated early response

gene.30 Fn14 is a type I transmembrane protein that when

mature has 102-aa. Fn14 is the smallest member of TNFRSF.

The intracellular Fn14 domain contains TNFR-associated

factor (TRAF)-binding sites which activate signal cascade.

Unlike TNF or Fas, Fn14 does not contain a death domain

(DD).31 In addition, CD163 binds TWEAK and is thought to

be a TWEAK scavenger receptor, since TWEAK-induced

signaling through CD163 was not observed.32,33

TWEAK has multiple functions with potential

physiopathological relevance for kidney injury that depend

on the microenvironment, the cell type and the cell state of

activation. TWEAK can regulate cell proliferation, cell

death, cell migration, cell differentiation, tissue regeneration,

neoangiogenesis and inflammation.34-43 TWEAK contributes

to tissue injury in the central nervous system, liver, gut, the

vasculature, skeletal muscle, heart and kidney.40,44-49

In the kidney TWEAK actions have been extensively studied

in tubular epithelium. TWEAK induces proliferation in non-

stressed renal tubular cells50 and apoptosis in tubular cells

stressed by an inflammatory milieu.14,51 Furthermore

TWEAK activates both canonical and non-canonical NFκB

transcription factor signaling.14,52-54 Through these actions

TWEAK promotes tubular injury in ischemic or toxic

AKI54,55 and kidney hyperplasia following unilateral

nephrectomy.56 Furthermore, TWEAK contributes to

vascular injury and in CKD patients soluble TWEAK

behaves as a biomarker of outcome, especially when

interpreted in the context of systemic inflammation.57-61 A

recent transcriptomics analysis of kidney tissue in AKI

confirmed highly upregulated levels of Fn14 mRNA (Figure

1). Regulation of the TWEAK/Fn14 system often takes

places through upregulation of receptor expression and, thus,

of cell sensitivity to TWEAK actions.

CXCL16

Chemokines are small cytokines formerly known as

intercrines62 that in the kidney tubulointerstitium may be

expressed by both tubular cells and fibroblasts.63

Chemokines promote leukocyte trafficking, growth and

activation in inflammatory sites.64 Chemokines promote

kidney tubulointerstitial inflammation.65,66 Leukocytes

recruited by chemokines have a key role in kidney

tubulointerstitial tissue injury during AKI and CKD.67,68

Several chemokines were upregulated in the transcriptome of

murine AKI.8 Some of them, such as MCP-1 and Rantes, had

already been studied.54 These chemokines share with most

chemokines their release as soluble mediators.65 CX3CL1

(fractalkine) and CXCL16 (SR-PSOX) were also found
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context of kidney disease.70 However, much less was known

about CXCL16 and kidney injury. Furthermore, CXCL16

expression correlated more closely than CX3CL1 with Fn14

expression.8 In addition, there is evidence that in humans

urinary TWEAK and CXCL16 may be a potential diagnostic

biomarkers of kidney diseases such as lupus nephritis.71,72

TWEAK is known to regulate the expression of several

chemokines. These peculiarities made a complete

understanding of the relationship between TWEAK and

CXCL16 regulation in kidney cells of particular interest. 

CXCL16 was identified by different groups as a ligand for

the CXC-chemokine receptor CXCR673 and as a scavenger

receptor for phosphatidylserine and oxidized low density

lipoprotein (oxLDL) and therefore was also termed SR-

PSOX.74 Full length CXCL16 consists of an extracellular N-

terminal chemokine domain, a glycosylated mucin-like stalk,

a transmembrane-spanning region and a short cytoplasmic

tail.73 Like CX3CL1, CXCL16 potentially functions as both

a soluble chemokine and a membrane-bound adhesion

molecule.75-78 CXCL16 regulated leukocyte chemotaxis, T

cell recruitment and cell proliferation.79-87

In the kidney, CXCL16 is constitutively expressed in human

mesangial cells, podocytes and tubular cells.79,86,87 There is

evidence for differential regulation of CXCL16 expression

in glomeruli or different tubular segments and in tubular

injury of diverse etiology. CXCL16 expression is increased

in various animal models of kidney injury and human

nephropathies.72,79,86-89

Glomerular CXCL16 expression is increased in human

membranous nephropathy.87 Glomerular and tubular

CXCL16 was also increased in lupus mice and in anti-GBM

nephritis.72,88,89 Functional studies suggest that CXCL16

promotes progression of damage in experimental

glomerulonephritis.88 CXCL16 blockade significantly

decreased monocyte/macrophage infiltration and glomerular

and tubular injury.88,89 In this regard, besides effects on

leukocytes, CXCL16 has direct actions on glomerular cells.

Podocyte CXCL16 may regulate the uptake of oxLDL,87

while mesangial cell CXCL16 promotes mesangial cell

migration and proliferation.79

In human allograft AKI, CXCL16 expression was

increased focally in the apical side of tubules.86 By

contrast, a low tubular CXCL16 expression was

observed in interstitial rejection that was attributed to

increases CXCL16 shedding. Thus, remnant CXCL16

was located to the basolateral membrane and surrounded

by T cell infiltrates. In experimental toxic AKI, both

prominent apical and basolateral CXCL16 expression

were noted.8 Thus, other tubular cells, the interstitium

and the tubular lumen were exposed to CXCL16 derived

from tubular cells. Interestingly, both patterns did not

overlap in many tubules.

upregulated in the murine AKI the transcriptome.8 CX3CL1

and CXCL16 are the only two known membrane-anchored

chemokines.69 CX3CL1 and CXCL16 are synthesized as

transmembrane molecules and, as such, have specific

functions that may go beyond their chemokines role. In

addition, they can be cleaved from the cell surface to release

a soluble chemoattractant that behaves as a classical

chemokine.69 Fractalkine has been extensively studied in the

Figure 1. Gene expression for representative mediators of

inflammation and ageing in experimental acute kidney

injury (AKI): Transcriptomics results of kidney tissue.

A) Fn14 mRNA. B) CXCL16 mRNA. C) KLOTHO mRNA. 
a p<.005 vs vehicle-injected controls (C). Data expressed as
mean (SEM).
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No in vivo functional studies of CXCL16 targeting in

tubulointerstitial kidney disease have been reported. In cell

culture CXCL16 did not induce murine tubular epithelial cell

proliferation or apoptosis, either alone or in combination

with TWEAK.8 However, CXCL16 had a proinflammatory

effect and increased TWEAK-induced gene expression of

ICAM-1, MCP-1 and RANTES. In this regard, tubular cells

expressed the CXCR6 receptor.8

In cultured glomerular cells CXCL16 is upregulated by

TNF-α and IFN-γ.79,86,87 IFN-γ increased CXCL16 expression

in cultured primary thick ascending limb cells and early

distal tubular cells.86 TWEAK is a novel regulator of

CXCL16 expression in tubular epithelial cells.8 TWEAK

promoted CXCL16 expression through the canonical NFκB

pathway in cultured tubular cells.8 Moreover, TWEAK

increased renal CXCL16 expression and interstitial CD3

positive lymphocytes. Since neutralization of TWEAK

decreased CXCL16 and CD3 lymphocyte infiltration in

experimental AKI, TWEAK-induced CXCL16 expression

may contribute to T cell recruitment and collaborate with

TWEAK in promoting inflammation.

KLOTHO

Klotho is a protein with anti-aging properties which is highly

expressed in tubular renal cells.90,91 Klotho is a single-pass

transmembrane protein. The extracellular domain of Klotho

may be proteolytically processed by ADAM10/17 and

secreted. In addition, alternative splicing may give rise to a

soluble secreted isoform.92 Trasmembrane Klotho binds to

multiple fibroblast growth factor (FGF) receptors conferring

them specific and high affinity for FGF23. FGF23 is a bone-

derived hormone that regulates phosphate homeostasis and

vitamin D metabolism. Thus, the main known function of

Klotho is regulation of phosphate metabolism and evidence

from mice in which phosphate was manipulated genetically

or through diet suggests that aberrant phosphate homeostasis

is a key contributor to the accelerated aging syndrome of

Klotho -/- mice.93 Klotho also protects cells and tissues from

oxidative stress and has anti-inflammatory properties

through modulation of NFκB signaling.94

Klotho is downregulated during kidney diseases, such as

long-term hypertension, diabetes mellitus, CKD,95 and in

experimental AKI induced by ischemia-reperfusion or a folic

acid overdose.7,96 In addition kidney Klotho was decreased in

the course of systemic inflammation caused by inflammatory

bowel disease and a neutralizing anti-TNF antibody

attenuated bowel inflammation and reversed the repression

of kidney Klotho expression.97 Consistent with these data,

Klotho was downregulated in the transcriptome of murine

AKI and Klotho expression was inversely correlated with

Fn14 expression, suggesting that TWEAK, like TNF, may

regulate Klotho expression. The reduction of kidney Klotho

during nephrotoxic AKI persisted beyond recovery of renal

function and was associated with decreased circulating

Klotho. The persistent decrease in Klotho might be related to

the increased mortality of AKI patients following recovery

from AKI. Since Klotho may be nephroprotective,96,98-100 the

persistent decrease in Klotho might also predispose to

progression of CKD. However, these hypotheses await

formal confirmation.

In nephrotoxic AKI, Klotho expression and renal function

were preserved by TWEAK targeting thus identifying a

potential regulator of Klotho expression in cultured cells.7

Indeed, in cultured tubular cells of proximal origin TWEAK

and TNF promoted the NFκB-dependent downregulation of

Klotho expression.7 TWEAK and TNF activate the canonical

pathway for NFκB activation, but only TWEAK activates

the non-canonical pathway.14,53 The reported downregulation

of Klotho by TNF7,97 and the time course of Klotho mRNA

downregulation, that is already observed at 3h, suggest

activation of the canonical NFκB pathway. Indeed, RelA was

necessary for TWEAK- and TNF-induced Klotho repression.

For the first time it was observed TWEAK downregulates

NFκB-mediated gene expression. Regulation of NFκB

activation function is controlled through different

mechanism, such as interaction of the p65/RelA subunit with

histone deacetylase (HDAC) corepresor proteins.101-103 In this

regard, HDAC inhibitors prevented repression of Klotho

induced by TWEAK or TNF. In addition, recruitment of

NFkB to chromatin is regulated in a promoter-specific

manner. TWEAK induced histone H3 and H4 deacetylation

at the murine Klotho promoter in renal tubular cells. 

INTERACTION BETWEEN INFLAMMATION AND
AGEING: NFκB

From the above mentioned studies the NFκB emerges as a

family of pleiotropic transcription factors with a key role at

the interface between inflammation and ageing.52,104-107 This

notion had been advanced before by proponents of the

inflamma-aging concept.108 The term inflamm-aging has

been used to describe the age-related increase in the systemic

pro-inflammatory status of humans.109

A wide range of stimuli relevant to tissue injury activate

NFκB, including cytokines, growth factors, immune

mediators, proteinuria and genotoxic or mechanical

stretch.110,111 Activation of NFκB can proceed through

classical/canonical, alternative/non-canonical NFκB and

hybrid pathways.104,106,112 Classical NFκB activation is usually

a rapid and transient response to a wide range of stimuli.

Under basal conditions NFκB is inactive in the cytosol

because it is bound to inhibitory IκB proteins. Activating

stimuli activate the inhibitor of κB kinases (IKK), which

phosphorylate IκBs, marking them for degradation by the

proteasome. Degradation of IκB releases and activates
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NFκB dimers, such as those containing RelA. RelA

containing dimers then migrate to the nucleus where they

bind to κB DNA sequences in promoters and enhancers of

target genes. In general canonical NFκB promote the

transcription and expression of proinflammatory genes, as

observed for CXCL16 in TWEAK-stimulated tubular cells.

There are several negative feed-back mechanisms. Thus,

suppressors of cytokine signaling (SOCS)-1 promotes the

ubiquitination and proteasomal degradation of RelA-

containing dimers, thus quenching the NFκB response.113 The

SOCS1 overexpression decreases inflammation in

experimental DN.114

As a result of NFκB integration of stimulus information it may

both induce or repress individual gene transcription.115 However,

the fact that NFκB can function as a repressor of gene

expression is less well-known. Gene expression repression by

NFκB may suppress the inflammatory response by recruiting

inhibitory components of the NFκB system. Thus,

antiinflammatory cytokines, such as IL-10 promote synthesis of

nuclear located atypical IκB proteins B-cell lymphoma 3 (BCL-

3), IκBζ and IκBNS, which bind to DNA-bound NFκB dimers

and may repress transcription of inflammatory genes.113 In

addition repression of gene expression by NFκB has been

implicated in sepsis-induced downregulation of kidney

aquaporin/V2 receptor and may have a role in resolution of

inflammation.116,117 However, classical NFκB dimers containing

RelA may also downregulate Klotho mRNA and Klotho-

dependent anti-inflammatory and ageing pathways, as observed

for TWEAK and TNF, and, thus, promote further injury in and

outside the kidney.

CONCLUSIONS

In summary, transcriptomics of AKI tissue has identified

TWEAK as a novel regulator of CXCL16 expression in renal

tubular cells through activation of the RelA NFκB transcription

factor. In addition, TWEAK, like TNFα, downregulated

Klotho in renal tubular cells through a similar NFκB RelA-

dependent mechanism. Since Klotho has anti-ageing and anti-

inflammatory properties, these findings may have therapeutic

implications in kidney injury and also for inflammation-

associated premature aging. Thus targeting either TWEAK,

through neutralizing anti-TWEAK antibodies currently

undergoing clinical trials in lupus nephritis, or targeting NFκB,

may potentially limit inflammation and the adverse

consequences of inflammation on ageing.
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