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a  b s  t r a  c t

Background: Diabetic nephropathy (DN) which refers  to the cases with biopsy proven kid-

ney lesions, is one of the main complications of diabetes all around the  world; however,

the  underlying biological changes causing DN remain to be understood. Studying the alter-

ations  in gene expression profiles could give a  holistic view of the  molecular pathogenicity

of  DN  and aid to discover key molecules as potential therapeutic targets. Here, we  per-

formed  a  meta-analysis study that included microarray gene expression profiles coming

from glomerular samples of DN patients in order to acquire a list of consensus Differentially

Expressed Genes (meta-DEGs) correlated with DN.

Methods: After quality control and normalization steps, five gene expression datasets

(GES1009, GSE30528, GSE47183, GSE104948, and GSE93804) were entered into the meta-

analysis. The meta-analysis was performed by  random effect size method and the

meta-DEGs were put through network analysis and different pathway enrichment analyses

steps. MiRTarBase and TRRUST databases were utilized to predict the meta-DEGs related

miRNAs  and transcription factors. A co-regulatory network including DEGs, transcription

factors and miRNAs was constructed by Cytoscape, and top molecules were  identified based

on centrality scores in the network.

Results: The identified meta-DEGs were 1364 DEGs  including 665 downregulated and 669

upregulated DEGs. The results of pathway enrichment analysis showed, “immune system”,

“extracellular matrix organization”, “hemostasis”, “signal transduction”, and “platelet acti-

vation” to  be the  top enriched terms with involvement of the meta-DEGs. After construction

of the  multilayer regulatory network, several top DEGs (TP53, MYC, BTG2,  VEGFA,  PTEN, etc.),

as  well as  top miRNAs (miR-335, miR-16, miR-17, miR-20a, and miR-93), and transcription

factors (SP1,  STAT3, NF-KB1, RELA, E2F1), were introduced as  potential therapeutic targets

in  DN. Among the regulatory molecules, miR-335-5p and SP1 were the most interactive

miRNA and transcription factor molecules with the highest degree scores in the constructed

network.
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Conclusion: By performing a  meta-analysis of available DN-related transcriptomics datasets,

we reached a  consensus list of DEGs for this complicated disorder. Further enrichment and

network analyses steps revealed the  involved pathways in the DN pathogenesis and marked

the  most potential therapeutic targets in this disease.

© 2022 Sociedad Española de  Nefrologı́a. Published by Elsevier España, S.L.U. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

Identificación  de  genes  clave y mecanismos  reguladores  biológicos  en  la
nefropatía  diabética:  metaanálisis  de conjuntos  de  datos  de expresión
génica
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r  e s u m  e n

Antecedentes: La nefropatía diabética (ND), que se refiere a los casos con lesiones renales

comprobadas por biopsia, es  una de  las principales complicaciones de la diabetes en todo

el  mundo. Sin embargo, los cambios biológicos subyacentes que causan la ND aún no se

han entendido. Aquí realizamos un estudio de metaanálisis que incluyó perfiles de  expre-

sión génica de  micromatrices provenientes de muestras glomerulares de pacientes con

ND  para adquirir una lista de genes expresados diferencialmente (meta-DEG) de  consenso

correlacionados con ND.

Métodos: Después de  los pasos de  control de calidad y normalización, se  ingresaron en el

metaanálisis cinco conjuntos de datos de  expresión génica (GES1009, GSE30528, GSE47183,

GSE104948 y GSE93804). El metaanálisis se  realizó mediante el  método de tamaño de  efecto

aleatorio y  los meta-DEG se sometieron a  análisis de red y  a  diferentes pasos de análisis

de  enriquecimiento de  ruta. Se utilizaron las bases de datos MiRTarBase y  TRRUST para

predecir los factores de  transcripción y los miARN relacionados con los meta-DEG. Cytoscape

construyó una red de  corregulación que incluye DEG, factores de transcripción y miARN, y

las moléculas principales se identificaron en función de las puntuaciones de centralidad en

la  red.

Resultados: Los meta-DEG identificados fueron 1.364 DEG, incluidos 665 DEG regulados nega-

tivamente y  669 regulados positivamente. Los resultados del análisis de  enriquecimiento

de  vías mostraron que «sistema inmunitario», «organización de la matriz extracelular»,

«hemostasia»,  «transducción de señales» y  «activación de plaquetas» son los términos más

enriquecidos con la participación de los meta-DEG. Después de la construcción de la red  reg-

uladora multicapa, varios DEG principales (TP53, MYC, BTG2, VEGFA, PTEN, etc.), así como

miARN principales (miR-335, miR-16, miR-17, miR-20a y  miR -93) y factores de transcripción

(SP1, STAT3, NF-KB1, RELA, E2F1) se introdujeron como posibles dianas terapéuticas en la

ND. Entre las moléculas reguladoras, miR-335-5p y  SP1 fueron las moléculas de  factor de

transcripción y  miARN más interactivas con las puntuaciones de  grado más altas en la red

construida.

Conclusión: Al  realizar un metaanálisis de  los conjuntos de datos transcriptómicos rela-

cionados con ND disponibles, llegamos a  una lista de consenso de DEG para este trastorno

complicado. Los pasos posteriores de enriquecimiento y análisis de redes revelaron las

vías  involucradas en la patogénesis de la ND y marcaron los objetivos terapéuticos más

potenciales en esta enfermedad.

©  2022 Sociedad Española de  Nefrologı́a. Publicado por  Elsevier España, S.L.U. Este es un

artı́culo Open Access bajo la licencia CC BY-NC-ND (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

Introduction

Diabetic nephropathy (DN) is one of the common compli-

cations of diabetes all around the world and refers to the

cases with biopsy proven kidney lesions.1 DN is  known as

the most common microvascular side effect of diabetes and

approximately 50% of patients with DN ultimately need dial-

ysis and kidney transplantation.2,3

DN is  accompanied by some structural changes in the

renal glomeruli which finally can lead to  albuminuria.4,5 So

far, various genetic and non-genetic factors were discovered

to take part in the pathogenicity of DN.6 However, despite

a huge number of investigations, the underlying molecular
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mechanisms of DN and the details of its pathogenicity are

not yet fully understood. In addition, most current treatment

options for DN are ineffective and include supportive and

nonspecific treatments such as  blood sugar control, blood

pressure control, and dietary restrictions.7 Recently, thanks

to the advent of high-throughput strategies, there has been a

great opportunity for researchers to catch a big map  of little

changes in  complicated diseases like DN. In this context, tran-

scriptomic studies are good examples that enable researchers

to assess a  large number of expressional alterations in any

disease state. Understanding the disease pathogenicity and

discovery of potential therapeutic targets could be two big

advantages of these omics-based investigations.8–10 However,

transcriptomic studies are facing some well-known chal-

lenges. These studies have yielded a list of candidate genes,

some of which could be false positives, then the achieved

list might lack real-world genes of interest.11 The first con-

sequence of this compromise is exploring unrelated gene

ontologies or pathways, which finally give misleading infor-

mation. To address this issue, one possible approach is  to

collect all the available and related data and perform a  meta-

analysis. Using this method could finally give more  robust and

consensus results.12 Accordingly, meta-analysis can greatly

reduce the false positives caused by differences in  sampling,

homogeneity, and study design in transcriptomics datasets.13

The aim of the present study was to draw together all the

publicly available DN-related glomerulus datasets and per-

form a meta-analysis in  order to reach a consensus list of

differentially expressed genes (DEGs) in this disease. Briefly,

after selecting, quality checking, and normalizing, the related

expression profiles were subjected to meta-analysis and the

resulted list of candidate genes was  considered for functional

enrichment analyses. Besides, to identify the top molecules

related to the  pathogenicity of DN, a  protein-protein interac-

tion (PPI) network consisting of the candidate genes, as well

as their related microRNAs (miRNAs) and transcription factors

(TFs), was constructed and analyzed.

Materials  and  methods

Dataset  selection  and  quality  control

Available human DN microarray datasets accessible through

NCBI Gene Expression Omnibus (GEO) and ArrayExpress,

deposited before 20/6/2020 were initially screened. “Diabetic

Kidney” and “Diabetic Nephropathy” keywords were used

for searching in databases. The inclusion criteria for select-

ing the datasets included: (a) expression profiles of human

DN samples; (b) expression profiles of DN-glomerulus sam-

ples; (c) expression profiles comprising of control samples;

and (d) expression profiles obtained from microarray chips.

The exclusion criteria included: (a) expression profiles of

non-human or non-DN cases; (b) expression profiles of non-

glomerular biopsies; (c) expression profiles with no control

samples; and (d) expression profiles obtained by other meth-

ods like real-time PCR or RNA-sequencing.

Principal component analysis (PCA) was  used for quality

valuation and identification of possible sample outliers in each

distinct dataset. Quantile normalization was applied for each

dataset to  conform sample distribution and remove technical

variations.

DEG  identification  and  meta-analysis

Network Analyst, a web interface for integrative meta-analysis

was utilized to perform the meta-analysis and identify com-

mon  DEGs in the expression profiles.13 The normalized

expression profiles were uploaded in  the required format, gene

IDs were converted to gene symbols and the adjusted p-value

cutoff of <0.05 was  considered for dataset analysis and DEG

identification. The batch effects were removed using ComBat

procedure. The random effect size was  selected for the  meta-

analysis based on the results of Cochran’s Q-test (estimating

statistical heterogeneity).14–16

Gene  ontology  and  pathway  analysis

The resulted meta-DEGs were subjected to gene ontology

(GO) (molecular function, biological process, and cellular com-

ponent) and pathway enrichment analysis. Meta-DEGs were

uploaded to the EnrichR server and the enriched GO terms

and Reactome pathways were extracted. Cytoscape software

(version 3.8.2)17 and EnrichmentMap plugin (version 3.3) were

applied for visualization of the enrichment results. With

grouping the significant gene sets based on their similarity,

the EnrichmentMap plugin could simplify the understanding

of the huge number of enriched gene sets.

Interactive  network  construction,  hub  gene  analysis

and identification

MiRTarBase (Release 7)18 and TRRUST (Version 2)19 databases

were used to predict the upstream regulators (miRNAs and

TFs) of the meta-DEGs in  the regulatory network. The con-

struction and visualization of the regulatory network were

done using Cytoscape software. After analysis of the con-

structed network, top meta-DEGs, top miRNAs, and top TFs

were identified based on their centrality measures using the

cytoHubba plugin20 in Cytoscape.

Results

Dataset  selection  and  quality  control:  five  expression

profiles  were  selected  for  further  analysis

Initially, 12 microarray expression profiles, including

4 profiles from non-kidney samples, 3 profiles from inter-

ventional studies, and 5 profiles coming from glomerular

DN and healthy samples were retrieved from GEO  and

Array Express databases. The 5  profiles containing untreated

human glomerular control (no: 74) and DN biopsies (no: 43)

were found suitable for further pre-analyses steps. The GEO

accessions of the selected expression profiles were GSE30528,

GSE47183 (GPL14663), GSE1009, GSE96804, and GSE104948

(GPL22945). Detailed information of the selected datasets

is provided in Table 1.  Fig. 1 shows the flow diagram of the

present study and Fig. 2 shows the flow diagram of microarray

data identification, screening and selection.



578  n e f r  o l o g i  a 2 0 2 3;4  3(5):575–586

Table 1 – Detailed information of the selected datasets.

GEO accession no. Raw samples Selected samples Platform Reference

GSE1009 3/3 (n  = 6) 3/3 Affymetrix Human Genome U95 Version 2 Array 37

GSE30528 17/14 (n  = 22) 13/9 Affymetrix Human Genome U133A 2.0 Array 38

GSE47183 GPL14663 13/9 (n  = 16) 9/7 Affymetrix GeneChip Human Genome HG U133A Custom CDF 39

GSE96804 20/41 (n  = 37) 20/17 Affymetrix Human Transcriptome Array 40

GSE104948 GPL22945 21/7 (n  = 20) 13/7 Affymetrix Human Genome U133 Plus 2.0 41

Sum 34/74 58/43

Fig. 1 – Flow diagram representing different steps of this study.

PCA (principal component analysis) is a  well-known

method to discover similarities and differences among sam-

ples via decreasing data dimensionality. This method is

mostly utilized as a  tool for assessing dataset quality and

detection of outliers.21 After performing PCA, removal of out-

liers, normalization, and batch effect removal steps, 58 DN

and 34 control samples were selected for the meta-analysis

(Fig. 3A–D).

DEG  identification  and  meta-analysis:  1364  DEGs  were

identified  as  DN  meta-DEGs

Meta-analysis (random effect size) was  successfully per-

formed on the pre-processed matrix files of the expression

profiles. The selection of the random effect size as  the meta-

analysis method was  based on the literature review and

the result of  Cochran’s Q-test.16,22 By applying the  adjusted

p-value of 0.05, 1364 genes including 665 downregulated and

669 upregulated ones were identified as  meta-DEGs. The com-

plete list of the identified DEGs is available in supplementary

file 1 (S1).  Heatmap of top 50  meta-DEGs based on adjusted p-

value and list of top 20 meta-DEGs based on their effect sizes

(fold changes) are demonstrated in Fig. 3E  and Table 2.

Functional  enrichment  analysis:  Meta-DEGs  were  mainly

enriched  in  the immune  system  and  cell-signaling

pathways

Functional enrichment analysis of the meta-DEGs was per-

formed (Table 3)  and the enrichment map  representation

of the GO enrichment results was constructed (Fig. 4).

According to the Reactome pathway analysis, the meta-

DEGs were mostly enriched in signal transduction, immune

system, metabolism and extracellular matrix organization.
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Fig. 2 – Flow diagram of microarray data selection. Identification, screening, eligibility extraction and inclusion steps in  the

process of data set selection are  shown in this flow diagram.

Biological process GO terms also confirmed the Reactome

analysis results, where the primarily enriched terms were

mainly related to signal transduction, extracellular matrix

organization and regulation of cell proliferation and death.

Actin binding and protein kinase activity were two main

molecular function enriched terms for the meta-DEGs. More-

over, according to the  cellular component GO enrichment, the

places of meta-DEGs activities are mainly cytoskeleton and

the perinuclear region of the cytoplasm.

Regulatory  network  construction  and  hub  molecule

identification:  15  DEGs  were  identified  as  top  molecules

in the  constructed  miRNA-TF  co-regulatory  network

It is  clear that the clinical presentation of diseases is the

result of numerous interactions between molecules in a

complicated network. For a  more  comprehensive under-

standing of the underlying interactions and co-regulatory

systems leading to diabetic glomerular injury and disease
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Fig. 3 – Data preprocessing and processing; (A and B): PCA plots before and after batch effect removal depicting the

similarities and differences between the case and control samples. (C and D): Density plots against log2 of read counts,

before and after batch effect removal showing the relative distribution of different counts in  each group. (E): The heatmap of

top 50 DEGs according to  adjusted p-value.
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Table 2 – Top 20 meta-DEGs based on their effect sizes.

Entrez ID Gene symbol Gene name Combined effect size p-Value

Top 10 down-regulated genes

5577 PRKAR2B Protein Kinase CAMP-Dependent Type II  Regulatory Subunit Beta  −3.4851 0

4868 NPHS1 NPHS1 Adhesion Molecule, Nephrin −3.0965 9.81E−07

81,563 C1orf21 Chromosome 1 Open Reading Frame 21  −3.0467 8.81E−06

1804 DPP6 Dipeptidyl Peptidase Like 6 −3.0186 1.52E−10

4015 LOX  Lysyl Oxidase −2.9973 0.026473

64,854 USP46 Ubiquitin Specific Peptidase 46  −2.9756 2.28E−06

9920 KBTBD11 Kelch Repeat And BTB Domain Containing 11 −2.9747 6.00E−09

51,196 PLCE1 Phospholipase C Epsilon 1 −2.9322 0.00016851

84,986 ARHGAP19 Rho GTPase Activating Protein 19  −2.9312 1.74E−08

2690 GHR Growth Hormone Receptor −2.898  0

Top 10 up-regulated genes

3489 IGFBP6 Insulin-like growth factor binding  protein 6 2.9568 1.22E−05

7045 TGFBI Transforming growth factor beta induced 2.8901 0.02694

1396 CRIP1 Cysteine Rich Protein 1  2.6809 1.13E−05

11,326 VSIG4 V-Set And Immunoglobulin Domain Containing 4 2.6797 0

6876 TAGLN Transgelin 2.5816 0.0019406

5118  PCOLCE Procollagen C-Endopeptidase Enhancer 2.5077 0

1278 COL1A2 Collagen Type I Alpha 2  Chain  2.4252 0.00018493

953 ENTPD1 Ectonucleoside triphosphate diphosphohydrolase-1 2.3568 0.0026177

1436 CSF1R Colony stimulating factor 1  receptor 2.3359 3.11E−10

7058 THBS2 Thrombospondin 2 2.3191 8.60E−14

Fig. 4 – Functional enrichment map  of meta-DEGs using top 20 enriched GO terms and pathways.

progression, a regulatory network consisting of interactions

among meta-DEGs and their related TFs and miRNAs was

constructed (Fig. S1). The constructed network is accessible at

the network data exchange (NDEx) server via the web address:

[https://public.ndexbio.org/#/network/009a65d0-0e4a-11ec-

b666-0ac135e8bacf?accesskey=0661be1f62b70547e39bbc-

9615f0691e33cce1be3c7c165b14d8cdcf975b42ef].

The constructed network consists of 3069 nodes and 30,759

edges incorporating 1282 DEGs, 1625 miRNAs, and 162 TFs

with minimum and maximum degrees of 1 and 289. Hub DEGs

were mined based on three degree, Betweenness, and close-

ness scores and top DEGs were identified as potentially key

players in the pathogenesis of DN (Fig. 5A and B, Table 4).

The top 5 TFs and miRNA molecules with the highest degree

centrality scores are also listed and described in  Table 4 and

supplementary file S2.  The 15 hub DEGs and their related miR-

NAs and TFs in the constructed regulatory network are shown

in Figures 4C  and 4D. In the case of miRNAs, hsa-mir-335-5p,

https://public.ndexbio.org/#/network/009a65d0-0e4a-11ec-b666-0ac135e8bacf?accesskey=0661be1f62b70547e39bbc9615f0691e33cce1be3c7c165b14d8cdcf975b42ef
https://public.ndexbio.org/#/network/009a65d0-0e4a-11ec-b666-0ac135e8bacf?accesskey=0661be1f62b70547e39bbc9615f0691e33cce1be3c7c165b14d8cdcf975b42ef
https://public.ndexbio.org/#/network/009a65d0-0e4a-11ec-b666-0ac135e8bacf?accesskey=0661be1f62b70547e39bbc9615f0691e33cce1be3c7c165b14d8cdcf975b42ef
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Table 3 – Top 10 enriched pathways and GO terms based on adjusted p-value.

Term Overlap Adjusted p-value

Pathway

Immune System 207/1547 6.45E−19

Extracellular matrix organization 67/283 5.06E−17

Extracellular matrix organization 67/283 5.06E−17

Hemostasis 100/552 5.06E−17

Signal Transduction 271/2465 4.46E−14

Platelet activation, signaling and aggregation 56/253 6.21E−13

Axon guidance 85/515 4.35E−12

Developmental Biology 111/786 2.36E−11

Innate Immune System 110/807 2.74E−10

Adaptive Immune  System 103/762 2.15E−09

Integrin cell  surface interactions 23/67 3.61E−11

Biological process

Extracellular matrix organization (GO:0030198) 62/229 5.89E−18

Regulation of cell proliferation (GO:0042127) 122/740 6.69E−17

Regulation of apoptotic process (GO:0042981) 127/815 9.15E−16

positive regulation of  intracellular signal transduction (GO:1,902,533) 83/479 2.55E−12

Positive regulation of  cell proliferation (GO:0008284) 74/424 4.74E−11

Positive regulation of  cellular process (GO:0048522) 84/519 6.17E−11

Cellular response to cytokine stimulus (GO:0071345) 77/456 6.22E−11

Transmembrane receptor protein tyrosine kinase signaling pathway (GO:0007169) 69/396 2.32E−10

Cytokine-mediated signaling pathway (GO:0019221) 93/633 6.55E−10

Positive regulation of  protein phosphorylation (GO:0001934) 69/412 1.27E−09

Molecular function

Actin binding (GO:0003779) 54/254 3.78E−11

Protein kinase activity (GO:0004672) 77/513 1.87E−08

Actin filament binding (GO:0051015) 32/127 1.87E−08

Protein homodimerization activity (GO:0042803) 91/664 2.45E−08

Phosphatidylinositol-4,5-bisphosphate 3-kinase activity (GO:0046934) 21/68 3.98E−07

Protein tyrosine kinase activity (GO:0004713) 32/147 4.63E−07

Phosphatidylinositol 3-kinase activity (GO:0035004) 22/76 4.63E−07

Phosphatidylinositol bisphosphate kinase activity (GO:0052813) 21/71 5.95E−07

Protein heterodimerization activity (GO:0046982) 45/265 1.13E−06

Kinase activity (GO:0016301) 43/280 3.93E−05

Cellular component

Actin cytoskeleton (GO:0015629) 57/294 1.83E−10

Focal adhesion (GO:0005925) 61/356 3.53E−09

Cytoskeleton (GO:0005856) 78/520 3.84E−09

Membrane raft (GO:0045121) 31/119 4.40E−09

Integral component of plasma membrane (GO:0005887) 163/1463 1.08E−08

Perinuclear region of cytoplasm (GO:0048471) 58/378 2.80E−07

Actin filament (GO:0005884) 17/55 3.69E−06

Specific granule (GO:0042581) 31/160 4.53E−06

Polymeric cytoskeletal fiber (GO:0099513) 37/221 1.25E−05

Platelet alpha granule (GO:0031091) 21/90 1.68E−05

hsa-mir-16-5p, hsa-mir-17-5p,  hsa-mir-20a-5p, and hsa-mir-93-

5p were recognized as top miRNAs targeting the majority of

meta-DEGs in the constructed regulatory network. SP1, STAT3,

NFKB1, RELA and E2F1 were the  top 5 TFs in  the constructed

network.

Discussion

Despite extensive research dedicated to understanding the

molecular mechanisms of DN, its pathogenicity is yet to be

completely understood. This lack of knowledge might be  due

to the heterogeneous nature of the disease or the method-

ological insufficiencies of previous studies. Systems biology

offers valuable approaches not only to decipher the underlying

molecular mechanism of diseases but also to  discover novel

therapeutic targets for their possible control and prevention.

Meta-analysis of transcriptomics datasets is one of the effi-

cient methods, which can provide more  consensus results

about heterogeneous diseases like DN. By integrating expres-

sion data acquired from independent studies, Meta-analysis

can enhance the statistical power and robustness of a study.

Consistency in the results of meta-analysis studies has made

them suitable choices for predicting more  reliable drug targets,

and uncover more  specific disease-related pathways.

So far, there have been several studies integrating DN tran-

scriptomics datasets. However, to the best of our knowledge,

there is no meta-analysis study conducted on human DN

transcriptomics datasets. In one recent experiment, after an

independent analysis of six DN-related datasets, regardless of
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Fig. 5 – Regulatory network analysis and hub molecule identification. (A). Top 30  DEGs based on degree, closeness and

betweenness centralities and Venn diagram showing the common DEGs among these three groups. (B). PPI network among

all the 15 identified hub genes. (C). TFs targeting the hub-genes. The highlighted nodes are hub TFs targeting hub DEGs in

the constructed regulatory network. (D). miRNAs targeting the hub-genes. The highlighted nodes are top miRNA molecules

targeting the hub DEGs in the constructed regulatory network.

the tissue type common DEGs were selected for the construc-

tion and analysis of a  co-regulatory network.23 Integrating

different sample types (blood and tissue biopsies) in this study

might cause more  heterogeneity and affect the overall result.

In addition, the  quality control and comparability of the ana-

lyzed datasets were not assessed in this study.

One of the forms of DKD is DN that is primarily initiated as a

glomerular disease, therefore in order to understand the earli-

est transitions occurring, the  tubular gene-expression profiles

were excluded to create more  homogenous data.24 Bearing in

mind the differences in gene expression between tubular and

glomerular tissues, to decrease potential heterogeneities, only

microarray datasets containing glomerular expression profiles

were selected.25

PCA is a valuable tool utilized to assess the quality of gene

expression profiles. It is sensitive toward batch effects, poor-

preprocessing analysis, and differences between conditions.26

We  applied PCA to check the quality of each dataset and

detect possible outliers. After normalization and batch effects

removal steps, meta-DEGs were obtained by random effect

size model.

Further on, we included other regulatory elements (miR-

NAs and TFs) and constructed an interactive regulatory

network to emphasize their roles as upstream regulatory
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Table 4 – List of Hub DEGs, hub miRNAs and hub TFs in the constructed regulatory network. (Hub DEGs were  extracted
from the network based on all three centrality measures. Top miRNAs and TFs were  identified based on degree
centrality).

Type Name Degree Betweenness Closeness Effect size

Hub DEGs TP53 289 0.055366234 0.4622057 1.716

MYC 243 0.03875081 0.439628078 1.0841

BTG2 198 0.021128465 0.388631628 −2.1663

VEGFA 171 0.017350083 0.409840068 −2.1739

PTEN 170 0.020197929 0.415573162 1.7626

CCND2 159 0.015703696 0.407600777 1.9671

JUN 152 0.016479319 0.423863636 −1.3785

CDKN1B 149 0.016394118 0.405092313 −2.3498

EZH2 146 0.022855403 0.406514895 2.3049

E2F3 144 0.014293772 0.403922512 0.67986

CDK2 133 0.422104866 0.013450841 0.86029

HMGA1 128 0.011564148 0.392035502 1.0348

EGFR 116 0.012111919 0.412712073 −1.2155

SRF 109 0.008931776 0.389804923 −0.82966

CCNB1 107 0.009250376 0.40626891 1.5288

Hub miRNAs hsa-mir-335-5p 217 0.045060387 0.422742728

hsa-mir-16-5p 154 0.015531343 0.42933879

hsa-mir-17-5p 135 0.011352436 0.423169041

hsa-mir-20a-5p 117 0.007208246 0.416966836

hsa-mir-93-5p 115 0.008493244 0.418213529

Hub TFs SP1  119 0.012389303 0.408195525

STAT3 84 0.009065199 0.386617529

NFKB1 84 0.006614608 0.397843091

RELA 77 0.005164742 0.395359793

E2F1 49 0.002982975 0.373290337

elements and insert more  weight into the constructed

network.27–29 TFs and miRNAs have long been recognized as

two types of  regulatory elements having a  pivotal role in acti-

vating or suppressing gene expression. It has been shown that

the interplay between these molecules regulates intra-module

and inter-module pathways, and distinct niches in gene reg-

ulatory networks.30 The regulatory network was constructed

by inserting these two  groups as the main upstream regu-

lators of gene expression. Several TF and miRNA molecules

were recognized as  the  top upstream regulators based on their

degree scores in  the network (Table 4). SP1, STAT3, NFKB1,

RELA, and E2F1 were the top 5 TFs with a potential role in

the pathogenesis of DN. In case of miRNA molecules, hsa-mir-

16-5p, hsa-mir-335-5p, hsa-mir-17-5p, hsa-mir-20a-5p, and

hsa-mir-93-5p were the top  miRNAs regulating meta-DEGs.

Supplementary file 2 (S2) listed some investigations about the

potential role of these regulatory hubs in kidney-related dis-

eases.

Our enrichment analysis showed three of the top enriched

pathways to be associated with the immune system (innate

immune, adaptive immune, and immune system). Although

metabolic and hemodynamic factors are traditionally thought

of as the root of DN, different evidence have intro-

duced immune mechanisms and inflammasomes as major

pathogenic factors.31,32 Scores of the therapeutic approaches

have been developed or repurposed to target the immune sys-

tem molecules and inhibit the  inflammation in DN disease.33

For instance, Baricitinib a selective inhibitor of JAK-1 and

JAK-2, was shown to reduce albuminuria (up to 30%) and

some inflammatory markers in DN patients.34 Back to the

results of the present experiment, JUN,  CDKN1B,  VEGFA,  PTEN,

EGFR, MYC and TP53 were among the identified hub  genes

with regulatory roles in the immune pathway that could be

considered for more  investigations as therapeutic targets in

DN.

The association of several of our top genes and DN have

previously been studied, but as far as we know, there were no

investigations on the possible linkage between other identi-

fied hubs and DN pathogenicity. For example, HMGA1 is  known

as  a pro-oncogenic gene producing an  architectural transcrip-

tion factor that regulates genes in  different cancer types.35 Its

role in insulin resistance is under research, but HMGA1’s role

in  kidney injury has yet to  be studied.36 CCND2, BTG2, E2F3,

CDK2, SRF, and CCNB1 were other relatively novel hub genes

that have not thoroughly been explored as  potential effectors

in DN. Therefore, detailed investigations are recommended.

In conclusion, the result of this meta-analysis experi-

ment was  a  consensus list of differentially expressed genes

in  the pathogenesis of DN. Further on, we recognized the

highly related regulatory elements including miRNAs and TFs,

and eventually presented a more  robust interactive network

including all these elements. Altogether, the obtained list of

molecules could be the focus of more  investigations in order

to understand the underlying aspects of the DN pathogenesis.

Moreover, the recognized hub  molecules either meta-DEGs or

other regulatory elements including miRNAs and TFs in  the

DN-related network is valuable for further studies, especially

in creating new treatments in the clinical context.
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