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a  b s t r  a  c t

There are many experimental data supporting the involvement of aldosterone and mineral-

corticoid receptor (MR) activation in the genesis and progression of chronic kidney disease

(CKD) and cardiovascular damage.

Many studies have shown that in diabetic and non-diabetic CKD, blocking the renin-

angiotensin-aldosterone (RAAS) system with conversion enzyme inhibitors (ACEi) or

angiotensin II receptor blockers (ARBs) decreases proteinuria, progression of CKD and mor-

tality, but there is still a  significant residual risk of developing these events.

In subjects treated with ACEi or ARBs there may be an aldosterone breakthrough whose

prevalence in subjects with CKD  can reach 50%. Several studies have shown that in CKD, the

aldosterone antagonists (spironolactone, eplerenone) added to ACEi or ARBs, reduce protein-

uria, but increase the  risk of hyperkalemia. Other studies in subjects treated with dialysis

suggest a  possible beneficial effect of antialdosteronic drugs on CV events and mortality.

Newer potassium binders drugs can prevent/decrease hyperkalemia induced by RAAS block-

ade,  and may reduce the high discontinuation rates or dose reduction of RAAS-blockers.

The nonsteroidal MR blockers, with more potency and selectivity than the  classic ones,

reduce proteinuria and have a  lower risk of hyperkalemia. Several clinical trials, currently

underway, will determine the effect of classic MR blockers on CV events and mortality in

subjects with stage 3b CKD and in dialysis patients, and whether in patients with type 2

diabetes mellitus and CKD, optimally treated and with high risk of CV and kidney events,

the  addition of finerenone to their treatment produces cardiorenal benefits.

Large  randomized trials have shown that sodium glucose type 2  cotransporter inhibitors

(SGLT2i) reduce mortality and the  development and progression of diabetic and nondiabetic

CKD.  There are pathophysiological arguments, which raise the possibility that  the  triple

combination ACEi or ARBs, SGLT2i and aldosterone antagonist provide additional renal and

cardiovascular protection.
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2013-2514/© 2020 Sociedad Española de Nefrologı́a. Published by Elsevier España, S.L.U. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.nefroe.2021.08.001
http://www.revistanefrologia.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.nefro.2020.10.001
mailto:pgomezf@senefro.org
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


n e  f r  o  l o g i  a.  (  2  0 2 1 );4  1(3):258–275 259

Bloqueantes  del receptor  mineralcorticoide  en  la enfermedad  renal
crónica

Palabras clave:

Bloqueantes de receptor

mineralcorticoide

Aldosterona

Enfermedad renal crónica

Nefropatía diabética

Finerenona

r e s u m e n

Hay abundantes datos experimentales que sustentan la participación de la aldosterona y

la estimulación del receptor mineralcorticoide (RM) en la génesis y  progresión de la enfer-

medad renal crónica (ERC) y  en el  daño cardiovascular.

Muchos  estudios han demostrado que en la ERC diabética y no diabética, el  bloqueo del

sistema renina angiotensina-aldosterona (SRAA) con inhibidores de enzima de  conversión

(iECA) ó antagonistas del receptor de angiotensina II (ARA2) disminuye la proteinuria, la

progresión de la ERC y  la mortalidad, pero persiste todavía importante riesgo residual de

desarrollo de estos eventos.

En  sujetos tratados con iECA ó ARA2 puede haber un escape de la aldosterona cuya prevalen-

cia  en sujetos con ERC puede alcanzar el  50  %.  Diversos estudios han demostrado que, en la

ERC, los fármacos antialdosterónicos clásicos (espironolactona, eplerenona) añadidos a  iECA

ó ARA2, reducen la proteinuria, pero aumentan el riesgo de hiperkaliemia. Otros estudios en

sujetos  tratados con diálisis sugieren un posible efecto beneficioso de los antialadosteróni-

cos  sobre eventos CV y mortalidad. Los nuevos ligadores intestinales de K+ pueden prevenir

ó reducir la hiperkaliemia inducida por el  bloqueo del SRAA, y  disminuir la desprescripción

o la reducción de  dosis de  fármacos bloqueantes del SRAA.

Los  bloqueantes del RM  no esteroideos, con más potencia y  selectividad que los clásicos,

reducen la proteinuria y  tienen menos riesgo de hiperkaliemia. Varios ensayos clínicos,

actualmente en realización, determinarán el efecto de  los bloqueantes clásicos del RM

sobre eventos CV y  mortalidad en sujetos con ERC estadio 3b y  en enfermos en diálisis,

y  si en enfermos con diabetes mellitus tipo 2  y  ERC, óptimamente tratados y con elevado

riesgo  de eventos CV y renales, la adición de finerenona a  su tratamiento produce beneficios

cardiorrenales.

Los  inhibidores del cotransportador sodio-glucosa tipo 2  (iSGLT2) han demos-trado reducir

la mortalidad y  el desarrollo y  progresión de la nefropatía diabética y no diabética. Hay

argumentos fisiopatológicos, que suscitan la posibilidad de que la triple combinación, iECA

ó  ARA2, iSGLT2 y  antagonista de  aldosterona ofrezca mayor protección renal y  vascular.

©  2020 Sociedad Española de  Nefrologı́a. Publicado por Elsevier España, S.L.U. Este es  un

artı́culo Open Access bajo la licencia CC BY-NC-ND (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

Introduction

Considerable evidence implicates the renin-angiotensin-

aldosterone system (RAAS) in the progression of chronic

kidney disease (CKD) Blocking the generation and action of

angiotensin II (AII)  by AII converting enzyme inhibitors (iACEi)

and the A II AT1 receptor blockers (ARA2) have shown to be

useful to reduce the progression of diabetic and non-diabetic

nephropathy1–5 and to decrease cardiovascular (CV) morbidity

and mortality and mortality of any cause.6 Mineralocorticoid

receptor (MR) blockade with spironolactone and eplerenone

adds an antiproteinuric effect when associated to ACEI or

ARA2. However, so far, there is no consistent evidence show

in a benefit of MR  blockade in the progression of CKD or in

reducing CV events and total mortality in CKD. However, MR

blockade in patients with heart failure with reduced ejection

fraction (EF) decrases CV events and mortality.7–9

Physiology/pathophysiology  of  aldosterone/MR

Aldosterone was  isolated in 1953 by Simpson et al.10 It  is

produced mainly by glomerulosa cells of the  adrenal glands.

Under certain circumstances, aldosterone is produced in the

heart, blood vessels, and adipocytes.11,12 Increased expres-

sion of aldosterone synthetase (AS) has been shown in human

coronary arteries from multi-organ donors, and it is  increased

in subjects with renal failure and correlates with the vascular

expression of the osteoblastic transforming factor: core binding

factor alpha 1  (CBFa1).13

The A II and an increase in K+ concentration are the

main aldosterone secretagogues. However, other factors such

as  ACTH, catecholamines, endothelin, and adipocyte-derived

products, such as leptin, adiponectin, and C1qTNF-related

protein 1 (CTRP1), also stimulate adrenal secretion of

aldosterone.12,14

In culture of aortic vascular smooth muscle cells, the pres-

ence of phosphorus in the medium induces an increase in the

vascular expression of AS.13 This fact  may be  relevant in  CKD.

In addition, in adrenal glands it has been demonstrated colo-

calization of klotho-AS and in klotho haplodeficient animals

there is an  increase in the expression of AS.15

The MR was cloned in 1997.16 It  is a  protein of 107 kD

encoded by a  gene located on chromosome 14. It has three

domains: an  N-terminal domain, another domain that binds

to DNA and a  third domain that is assembled to the ligand. Cer-
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Table 1 – Mineralcorticoid receptor locations.

Distal convoluted tubule and

connecting tubule

Cardiomyocytes

Dense  macula Adipocytes

Podocytes Fibroblasts

Mesangium Macrophages

Colon Limbic neurons of  the

hypothalamus

Vascular smooth muscle cells Salivary glands

Endothelial cells Sweat glands

tain coactivators and co-repressors bind some domains, that

can be tissue-specific and modulate specific actions in  certain

organs.17 There are MR in  the renal collecting duct and colon

(classic sites), and also in other locations18–25 (Table 1).

Cortisol also binds to MR.  In epithelial cells and vascu-

lar endothelium, the enzyme 11-�OH-steroid dehydrogenase

converts cortisol into cortisone, thus preventing its binding to

MR.

The MR  is not inserted directly into the cell membrane. In a

basal state, not bound to  the ligand, the RM  is  located predom-

inantly in the cytoplasm bound to chaperones that facilitate

its binding to the ligand and serve as shuttles of the RM-

ligand complex to  the nucleus.25 The aldosterone-RM binding

promotes several effects: (1) the RM  complex and its ligand

are translocated to the nucleus where it  forms dimers and

activates genes encoding certain proteins (genomic effects)

(Fig. 1);  There may  be interaction with other cytoplasmic tran-

scription factors such as  nuclear factor of activated T-cells (NAFT)

and cAMP response element-binding protein (CREB) that can mod-

ify genomic signals; (2) in addition to the genomic effects,

there may be fast non-genomic effects. The aldosterone-MR

complex can directly activate cytoplasmic kinases through its

interaction with membrane receptors.25,26 Aldosterone binds

to MR that is anchored in the membrane by caveolin and

striatin and interacts with membrane receptors such as  epi-

dermal growth factor receptor (EGFR), platelet derived growth factor

receptor (PDGFR), insulin like growth factor receptor (IGF1R), vas-

cular endothelial growth factor receptor (VEGFR), G  protein coupled

estrogen receptor (GPER) and angiotensin II receptor type I  (AT1R).

This interaction is responsible for the non-genomic effects

of aldosterone mainly related with electrolyte transport and

vasomotor tone (Fig. 1).

The genomic signals of MR-aldosterone can be modified by

epigenetic signals and undergo post-transcriptional changes.

Also the redox status and the amount of reactive oxygen species

(ROS) influence the cellular processes and even the activation

mechanism triggered by the activation of MR.

The activation and transcriptional effect of MR may occur

without its binding to the ligand (aldosterone or cortisol).

Activation of ras-related C3 botulinum substrate 1 (Rac1) may

cause MR stimulation with its transcriptional activity inde-

pendently of aldosterone27 (Fig. 1). Rac1 is a  member of the

RhoGTPase subfamily that transduces extracellular signals

from G protein-coupled receptors, integrins, and growth fac-

tors to effector molecules that modulate multiple signaling

pathways. Various stimuli, such as  mechanical stretching,

inflammatory cytokines, growth factors, glucose, aldosterone,

and oxidative stress, among others, activate Rac1.28 In vitro

studies show that Rac1 improves the transcriptional activ-

ity of MR  by increasing its nuclear translocation.29 Studies

in animal models with increased Rac1 activation, the Rac1-

MR interaction is  associated with proteinuria and podocyte

damage, without changes in aldosterone levels. Pharmacolog-

ical inhibition of Rac or the  use of MR  antagonist inhibits the

hyperactivity of MR  and reduced renal histological changes

and proteinuria.29

Mesangial cells cultured in high glucose increase Rac1

activity, and mayenhance the transcriptional activity of the

MR  induced by aldosterone; also it may  increase transcrip-

tional activity of the RM in the absence of aldosterone in

the medium.30 In animal models of obesity-related diabetic

nephropathy in which there is  an increase in plasma aldos-

terone concentration and renal Rac1 activity, administration

of a  specific Rac inhibitor suppressed renal Rac1, decreased

MR activation, and attenuated renal damage, all without

changes in the  aldosterone level.30 In the murine model of

salt-sensitive HT, the high-salt diet increases renal Rac1 activ-

ity  and produces MR activation at the renal level, and induces

HTN and kidney damage despite low plasma aldosterone lev-

els. The opposed, Rac inhibition prevented hypertension and

kidney damage. The infusion of aldosterone enhanced the

activation of the MR  by Rac1 which demonstrate an additive

effect of Rac1 and aldosterone.31

In most of these studies, the  increase in MR  transcrip-

tional activity induced by Rac1 was due to an increase in

nuclear translocation of MR. There are other mechanisms

could participate in  the increase in MR  signals mediated by

Rac1: both the amount and modifications of signals (phos-

phorylation, acetylation, sumoylation (small ubiquitin-related

modifier) of MR, changes in its efficacy after activation due

to epigenetic modifications or recruitment of co-regulators,

among others.28

Aldosterone-independent MR modulation by Rac1 may  be

of great relevance not only because it enhances the  MR  acti-

vation exerted by aldosterone, but also because it  activates

MR, promoting organ dysfunction in situations in which the

plasma concentration of aldosterone is  normal or reduced, as

frequently occurs in DM with renal involvement and in salt-

sensitive HT, among others. It would also explain that the

effect of MR  antagonists is  not correlated on many  occasions

with the plasma concentration of aldosterone.

Effects  of  aldosterone  on the  renal  tubule

The first action described of aldosterone was on the main cells

of the renal collecting duct. After translocation to the  nucleus,

the aldosterone-MR complex interacts with a  large number

of genes that encode proteins such as the alpha subunit of

the epithelial sodium channel (ENaC) and serum and gluco-

corticoid-regulated kinase 1  (SGK1), which control the amount

and the activity of ENaC in the apical part of the membrane

and of the Na-K-ATPase pump in the basolateral membrane.

The electrogenic increase in  tubular reabsorption of Na+ sec-

ondary to the activation of ENaC favors the secretion of K+

by the renal outer medullary K+ channel (ROMK).32 Recent find-

ings show that in the presence of hypokalemia, aldosterone

activates the pendrin, ATPase dependent H+ secretion and the

thiazide sensitive cotransporter Na+–Cl− (NCC).33–35
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Figure 1 – At a basal state, the mineralocorticoid receptor (MR) is predominantly located in the cytoplasm, forming part of a

complex with the chaperone heat shock protein (Hsp90), which facilitates its binding to the ligand, and with the

immunophilin FK506-binding protein of 51 kDa (FKBP51). After binding to the ligand, immunophilin FKBP51 is replaced by

FBBP52, which facilitates the transit of the RM-ligand complex from the cytoplasm to  the nucleus. Once in the nucleoplasm,

the RM-ligand dissociates from the chaperone and immunophilin to bind to DNA and form dimers. MR binds to specific

DNA sequences, the hormone response element (HRE) to regulate the transcription of target genes (some of these are  shown in

the figure). MR-mediated transcriptional activity can be increased or repressed by regulatory proteins such as steroid receptor

coactivator 1 (SRC1), cAMP-response element binding protein (CBP), and transcriptional intermediary factor 1a (TIF1a), among

others. 2. The RM-ligand complex can interact with other transcription factors such as cAMP response element-binding protein

(CREB) and nuclear factor of activated T-cells (NFAT), which can influence transcription. Aldosterone also binds to  MR

anchored in the cell membrane by caveolin (Cav1) and striatin, transactivating membrane receptors such as epidermal

growth factor receptor (EGFR), platelet derived growth factor receptor (PDGFR), insulin like growth factor receptor (IGF1R), vascular

endothelial growth factor receptor (VEGFR), G protein coupled estrogen receptor (GPER) and angiotensin II receptor type I (AT1R). All

this promotes signals that involve, among other effects, kinase activation. These events are  responsible for the rapid,

non-genomic effects of aldosterone. 3. Activation of the RM receptor is possible without the ligand. The activation of

Ras-related C3 botulinum toxin substrate 1 (Rac1) by stimuli such as oxidative stress, glucose, AII, among others, can  promote

the translocation of the RM  to the nucleus and trigger its transcriptional activity.

Aldosterone exerts tubular effects that affect the affer-

ent arteriole and, therefore, glomerular filtration (GFR). The

macula densa (MD) contains MR whose activation by aldos-

terone increases nitric oxide production with attenuation of

the tubulo-glomerular feedback (TGF) response (decrease in

the afferent arteriole vasoconstrictor response induced by the

delivery of  Na+ to MD).36 In addition, by activating ENaC and

increasing distal Na+ reabsorption, it induces vasodilation of

the afferent arteriole (tubule connecting-glomerulus feedback

[TCGF]), which also antagonizes TGF.37,38

Vascular  effects  of aldosterone

In addition to this indirect effect on glomerular hemody-

namics, aldosterone has  a direct impact on the systemic

and renal vasculature. There are MR  on the  endothelium

and the smooth muscle  cell. In blood vessels, it regulates

genes involved in fibrosis, calcification, and inflammation. The

degree of regulation depends on other factors, such as type of

flow (laminar/turbulent) and oxidative stress, among others.

Endothelial MR activation produces an increase in  endothelial

ENaC expression, intensifies oxidative stress and inflamma-

tion, contributing to endothelial dysfunction and increased

arterial stiffness.39,40

In the vascular smooth muscle cell, MR activation con-

tributes to  the regulation of vascular tone through a  series

of events (activation Src kinase, Rho  kinase and placental

growth factor [PlGF], among others) that induce proliferation,

fibrosis, remodeling and increase of arterial stiffness.26,39 Con-

sequently, activation of vascular MR produces target organ

damage, HTN, coronary vascular dysfunction, cardiac fibrosis,

alterations in renal hemodynamics, and kidney damage. Many

of the effects of MR activation are not genomic.26 There is

intimate interaction and synergy between genomic and non-

genomic effects of aldosterone such that non-genomic effects

may provide support to  genomic actions.
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Experimental  data  on the  effects  of  aldosterone  and  MR

block  in  models  of  kidney  damage

There are many  studies on the effect of aldosterone and the

pharmacological blockade or deletion of MR  in  animal models

of kidney damage and in vitro investigations in various types

of kidney cells (Table 2). We  highlight the most relevant on the

different renal structures and in the  systemic vasculature.

Effects  of  aldosterone  on renal  hemodynamics  and  acute

tubular  damage

Aldosterone causes renal vasoconstriction by increasing Rho

kinase activity, endothelin, and the AT1 receptors of AII. In ani-

mal  models of renal damage induced by ischemia-reperfusion,

the administration of spironolactone prior to  or within 6 h of

the onset of ischemia attenuates renal hypoperfusion, reduces

oxidative stress and prevents structural damage (tubular

necrosis) and decreases tubular damage markers such as  kid-

ney injury molecule (KIM-1) and heat shock protein (HSP72).41 In

the model of renal damage induced by cyclosporine, in which

there is vasoconstriction of the afferent arteriole, the MR  of

vascular smooth muscle cells also participates by modulat-

ing the phosphorylation of their contractile proteins and the

activity of their calcium L channels. Deletion of the MR of

vascular smooth muscle cell prevents histological damage,

vacuolization of the proximal tubular cells and overexpression

of - neutrophil gelatinase associated lipocalin (NGAL), a marker of

tubular damage.42

Effect  on  the  renal  interstitium.  Production  of  interstitial

fibrosis

There are several mechanisms involved in  the genesis of renal

interstitial fibrosis and chronic kidney damage: transforma-

tion of tubular cells into mesenchymal cells, inflammation,

and inadequate tissue repair after acute kidney injury (AKI).

All of these have been shown to be involved in  the renal

profibrotic effects of aldosterone. Human proximal tubular

cells exposed to aldosterone undergo epithelial-mesenchymal

transformation by activation of extracellular regulated kinases

(ERK1 and 2) secondary to the generation of mitochondrial

ROS.43 This increase in mitochondrial ROS is also responsi-

ble for the activation of the inflammasome nucleotide-binding

domain and leucine-rich repeat containing PYD-3 (NLRP3), which

is as associated with an increase in fibrogenic interleukins IL-

1b and IL-18 that is  observed when proximal tubular cells HK-2

are cultured in aldosterone medium. Both the mesenchymal

transition and the activation of the inflammasome are blocked

by aldosterone antagonists.43,44

There is evidence that AKI  can be a factor in the

development of interstitial fibrosis and CKD.45 This AKI-

interstitial fibrosis interconnection is mediated, in part,

by the early appearance of inflammatory cells that play

an important role in defective repair after AKI. In the

model of AKI due to  ischemia-reperfusion, finerenone, an

MR  antagonist, decreases interstitial fibrosis by activat-

ing the signals mediated by the IL-4 receptor, increasing

anti-inflammatory M2  macrophages and decreasing the pro-

inflammatory macrophage phenotype.46 In animal models of

ischemia induced AKI, spironolactone administration, before

or after ischemia, prevents the development of CKD by

preventing the activation of inflammatory and profibrotic

processes.47

Effect  on  glomerular  cells

Aldosterone participates in the alterations of various glomeru-

lar cells that possess MR and are able to produce functional

and structural alterations of the glomerulus.

The podocyte is a  fundamental component of the glomeru-

lar filtration barrier. Alterations in the function and structure

of the podocyte constitute the  pathophysiological basis of

many  glomerular diseases including diabetic nephropathy.48

The podocyte participates in aldosterone-induced glomeru-

lar damage. In uninephrectomized rat fed a high-salt diet,

the administration of aldosterone induces proteinuria, struc-

tural alterations of the podocyte and a decrease in the gene

expression of the podocyte proteins nephrin and podocin.

Podocyte damage is associated with increased oxidative

stress and SGK1 activation. Epleronone treatment prevents

podocyte damage.49 In podocyte culture, aldosterone stimu-

lates oxidative stress and the  expression of SGK1, which is

inhibited by epleronone and bysuperoxide dismutase, sug-

gesting that aldosterone affects podocyte function through

oxidative stress and SGK1.49

The inflammasome NLRP3 is also involved in aldosterone-

induced podocyte damage. The inflammasome activates

procaspase 1 which in turn induce activation of IL-1b and IL-

18. In podocytes incubated with aldosterone, it is observed

an  increase in the expression of NLRP3 which increases the

expression of caspase 1 and the concentration of IL-1b and

IL-18). The increase in  oxidative stress participates in the  acti-

vation of NLRP3, since it is attenuated if N-acetylcysteine is

added to the  medium.50 Similar results are observed in in vivo

experiments. The administration of aldosterone to experi-

mental animals also induces an  increase in the expression of

NLPR3 in podocytes and also produces damage of the podocyte

with loss of nephrin and podocin, alterations that are not

observed in animals with a deletion of the NLRP3 gene.50

Aldosterone contributes to the generation of glomeru-

lar inflammation and fibrosis, two  fundamental processes

involved in glomerular sclerosis. Both in vivo and in vitro,

aldosterone stimulates the expression and activity of SGK1

in the mesangium, which is  involved in  the transcription of

connective tissue growth factor (CTGF) and intercellular adhe-

sion molecule (ICAM-1), which are related to the  fibrosis and

glomerular inflammation, respectively. These phenomena are

attenuated by the administration of epleronone.51

Aldosterone also contributes to the glomerular inflamma-

tion seen in  experimental glomerulonephritis (GN). In animal

models of rapidly progressive GN, deletion of MR in  myeloid

cells, as  well as therapy with RM antagonists reduced the

early neutrophil infiltration of the glomerulus and later on,

the glomerular recruitment of macrophage with the corre-

sponding decreased expression of proinflammatory cytokines,

diminution of crescents and better preservation of renal

function.52
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Table 2 – Some experimental data on renal effects of aldosterone and mineralocorticoid receptor (MR) blockade/deletion.

Study Experimental model Effect of  aldosterone/MRI block Outcome

Effect on acute kidney injury

Sánchez Pozos et al., 201241 Acute kidney injury by I/R  Spironolactone Prevents the  decrease of the ETB vasodilator

receptor

Spironolactone prevents kidney dysfunction,

tubular damage, and oxidative  stress

Amador et  al., 201642 Kidney damage  from

cyclosporin

MR deletion in vascular

smooth muscle cells

Deletion  of MR prevents renal dysfunction, tubular

cell vacuolization, and overexpression of NGAL. MR

deletion reduces cyclosporine-induced

vasoconstriction due to decreased Ca++ L channel

activity

Effect on transition from acute kidney injury to CKD

Zhang et al.,  200743 Culture of  human tubular

epithelial cells

Aldosterone Aldosterone induces epithelial-mesenchymal

transition by increasing mitochondrial ROS

production via  ERK1/2 activation

Barrera-Chimal et al.,

201347

Acute kidney injury by I/R  Spironolactone Decreased progression of  CKD and

pro-inflammatory fibrosis and IL markers

Ding et al.,  201644 Culture of  human renal

tubular cells (HK-2)

Aldosterone Aldosterone induces cell damage by stimulating

mitochondrial ROS production and NLRP3

inflammasome activation

Barrera-Chimal et al.,

201846

Acute kidney injury by I/R  Fineronone or MR  deletion

in myeloid cells

Decreased renal  dysfunction, renal  fibrosis, and

pro-inflammatory macrophages (M1)

Increased macrophages with anti-inflammatory

phenotype (M2)

Effect on glomerular cells (podocytes, mesangial cells, parietal epithelium)

Shibata et  al., 200719 Uninephrectomized rats Aldosterone administration

and high salt diet

Development of proteinuria and reduction of

nephrin and podocin in podocytes. Increased SGK1

activity and oxidative stress of podocytes

Administration of  epleronone prevents  podocyte

damage

Eplerenone

Terada et  al., 200851 Mesangial cell culture Aldosterone in  the  culture

media or aldosterone

administration

Increased expression-activity of  Sgk-1 and NFk-B,

ICAM-1, CTGF. Aldosterone administration produces

an increase in glomerular expression of all these

factors, accompanied by glomerulosclerosis and

inflammation.

Rectomized

uninefrectomized

Huang et  al., 201452 Experimental model  of

rapidly progressive

glomerulonephritis

MR deletion in myeloid

cells, epleronone

Both MR deletion and epleronone are associated

with reduced crescent formation and expression of

pro-inflammatory molecules at  the renal level,

reduction of tubular damage and renal  fibrosis

Bai et al., 201750 Podocyte culture Exposure to aldosterone Exposure of podocytes to aldosterone increases

expression of NLRP3 lymphoma, caspase1 and IL-18

in podocytes.  In  vivo,  administration of  aldosterone

to mice produces NLRP3 activation and decreased

podocyte nephrin; epleronone blocks NLRP3

inflammasome activation

Vascular effects

Tsatsumoto et al., 201555 Experimental model  of

adenine-induced chronic

kidney damage

Spironolactone Spironolactone reduces aortic calcification together

with the aortic expression of Runx2 and the

sodium-phosphorus cotransporter (Pit-1), TNFa and

Sgk-1

Khan et al., 201953 Coronary Artery Function

Investigated Using

Myography

Subpression of aldosterone Decreased the  vasodilation dependent of  adenosine

A 2A receptors by down-regulation of K Ca receptors

(calcium-dependent K  + channels)

CTGF; connective tissue growth factor; CKD: chronic kidney disease; ETB: endothelin B; ERK1/2: extracellular signal-regulated kinases;  HK-2: human

kidney 2; I/R: ischemia/reperfusion; ICAM-1: intercellular adhesion molecule-1;  IL: interleukins; NFk-B: nuclear factor kappa-light chain enhancer of

activated B cells; NGAL: neutrophil gelatinase-associated lipocalin;  NLRP3: nucleotide-binding domain and  leucine-rich repeat containing PYD-3;  MR: min-

eralocorticoid receptor; ROS: reactive oxygen species; Runx2: runt-related transcription factor 2; Sgk-1: serum and  glucocorticoid regulated kinase 1;

TNFalpha: tumor necrosis factor alpha.
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Systemic  vascular  effects

Aldosterone exerts systemic vascular effects that may be

relevant in CV morbidity and mortality of CKD patients.

Aldosterone increases oxidative stress, promotes phenotypic

changes in vascular smooth muscle cells and fibrosis of the

vascular wall.39

The infusion of aldosterone to experimental animals

worsens endothelial function and vasodilation mediated

by adenosine by reducing the A2a receptor dependent of

calcium-activated K channels.53 This is relevant because the

microvascular dysfunction evidenced by decrease in coronary

reserve mediated by A2a predicts cardiovascular mortality in

CKD patients on dialysis.54

Vascular calcifications are very frequent in  the different

stages of CKD, these calcifications have hemodynamic con-

sequences and predict CV events and mortality. Important

to note that in  adenine -  induced CKD animal model of vas-

cular calcification, spironolactone administration attenuates

vascular calcification by suppression of osteogenic transdif-

ferentiation of vascular smooth muscle cells.55

Effects  of MR blockade  in CKD.  Clinical  studies

MR  blockade  and  HTN

One of the factors that promote CKD progression is hyper-

tension. Aldosterone favors Na+ retention, increases blood

volume, produces vasoconstriction, endothelial dysfunction,

increases arterial stiffness, and alters the baroreflex response.

MR blockade reduces blood pressure (BP).56,57 In resistant

HTN, the addition of spironolactone to  the  therapeutic triad:

diuretic-ARS blockade-calcium antagonist produced a  greater

reduction of BP than the addition of doxazosin or  beta-

blocker.58

Resistant HTN is common in CKD. Even in CKD with well

controlled BP, administration of spironolactone slows pulse

wave velocity, a  marker of arterial stiffness and LVH.59 The

decrease in arterial stiffness benefits the  heart because it

reduces the central systolic BP and also  favors the kidney. A

rigid aorta that is  not capable to mitigate the pulsatile flow

generated by  ventricular ejection, the fluctuations of pulsatile

flow will be transmitted without attenuation to the capillaries

in those organs with a low vascular resistance such as  the  kid-

ney. Increased arterial stiffness is associated with a decrease

in GFR.60

Plasma  aldosterone  values  and  renal  expression  of  MR  in

CKD

In CKD there is an  increase in plasma aldosterone which is

inversely related to the GFR.61 Although, as  in normal sub-

jects, there is  an  inverse relationship between Na+ intake

and aldosterone. However, in renal failure there is inad-

equate suppression of aldosterone.62 CKD is a  state of

relative hyperaldosteronism. The underlying cause of the

increase in aldosterone when the GFR decreases, that per-

sists despite the blockade with ACEi or ARA2, is not clear.63

There is a direct relationship between PTH/FGF23 and aldos-

terone, and an inverse relationship between klotho and

aldosterone.64 A decrease in klotho values can increase aldos-

terone synthesis.15 The existence of imperceptibly elevated

K+ values could also contribute to aldosterone elevation. In

another sense, the association between elevated aldosterone

values and a decrease in GFR could be due to  the renal damage

induced by aldosterone.

In the  proteinuric nephropathies it has been also demon-

strated increased renal expression of the MR  which correlates

with the presence of inflammatory markers.65

All this, together with the experimental data, reaffirms

the association between CKD and aldosterone, and raises a

probable nephroprotective effect of a  reduction of aldosterone

values or a  blockade of its effects.

Aldosterone  escape  with  drugs  that  block  RAS

The most important secretagogue of aldosterone is  AII. The

use and optimization of doses of drugs that block the gen-

eration or action of AII is associated with a  decrease in the

development and progression of CKD and death.66,67 The dual

blockade of the RAS (ACEi + ARA2) reduces proteinuria com-

pared to  monotherapy, but iy is associated with a higher risk

of hyperkalemia.68 In all these studies, despite therapy with

ACEI, ARA2 or their combination, it persists a high residual

risk of CKD progression and death.

This residual risk may be in  part due to  the so-called aldos-

terone “escape”: elevation of plasma aldosterone levels, after

an initial decrease, when an RAS blocker is  administered. In

CKD, this occurs frequently, in 40–53% of cases,69 and it is asso-

ciated with reappearance or the increase in  proteinuria and

a decrease in GFR.70,71 The cause of the aldosterone escape

is unknown. An increase in serum K+ and ACTH, a decrease

in atrial natriuretic peptide,72 or a  lack of inhibition of the

receptor AT1 of the  A II receptor bound to ®-arrestin1 may

contribute to escape.73 The involvement of aldosterone in  this

phenomenon is reinforced by the  finding that the administra-

tion of spironolactone reduces proteinuria after its relapse.70

Effect  of  MR  blockade  on proteinuria  and  GFR  in  CKD

The first study on the effect of MR blockade in  proteinuric

nephropathy included 8  patients. The addition of spironolac-

tone to ACEi achieved a 45% reduction in proteinuria, without

changes in BP.74 In another study with 165 patients with non-

diabetic proteinuric nephropathy treated with ACEI or ARA2,

the administration of spironolactone 25 mg/day for one year

reduced proteinuria by 50%. In the group receiving spirono-

lactone it was observed that the GFR initially decreased with

subsequent stabilization, while the control group showed a

progressive decrease in  GFR.75 This pattern of GFR behavior

mimics that found with drugs that reduce hyperfiltration, an

effect that, in the case of MR blockers, probably derives from

their action on glomerular hemodynamics.36–38 In another

study in subjects receiving RAS blockers with residual protein-

uria, addition of spironolactone therapy for 2 years produced

a progressive reduction in  proteinuria, to a 63%. The  evo-

lution of the GFR was better in those in which the initial

decrease was greater.76 Various meta-analyzes have shown

that aldosterone antagonists added to ACEI or ARA2 produce
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a significant decrease in  proteinuria, a reduction in BP, but an

increased risk of hyperkalemia (Table 3).77–79

In an analysis of a  database from subjects with CKD stages

3–4, the comparative study, after adequate adjustment of vari-

ables, between patients on spironolactone (n = 693) vs  those

who  did not receive (n  = 1386) showed that patients receiving

spironolactone had less progression to CKD with less dial-

ysis requirements (hazard ratio [HR] 0.66; 95% CI, 0.51−0.84;

p < 0.001) and a  higher risk of hospitalization due to hyper-

kalemia (HR 3.17; 95% CI 2.41–4.17; p < 0.001).80

Recently, a  probable nephroprotective effect of the sodium-

glucose cotransporter type 2  (iSGLT2) inhibitor dapagliflozin

has been observed in non-diabetic CKD. The DAPA-CKD (The

effect of dapagliflozin on renal outcomes and cardiovascular mortal-

ity in patients with chronic kidney disease) clinical trial81 included

4245 subjects with CKD stages 2–4 with increased urinary albu-

min  excretion, with a maximum tolerated dose of ACEi or

ARA2. Patients were randomized to dapagliflozin 10 mg/day

or placebo. The primary endpoint was  a decrease of the by

GFR ≥50%, advanced CKD (FG < 15  ml/min, dialysis or renal

transplant) or renal and cardiovascular death. On March 30,

2020, the trial was discontinued because it was observed,

ahead of schedule, the probable benefits in the  dapagliflozin

branch. Although the results are not published yet, it seems

presumable to attribute the early suspension of the trial to the

superiority of dapagliflozin in  reducing events.

One of the  mechanisms involved in the nephroprotective

effect of iSGLT2 is the decrease in intraglomerular pressure

secondary to the vasoconstriction of the afferent arteriole

induced by the  increased supply of Na+ to MD.82 Coadmin-

istration of ACEi or ARA2 would enhance the decrease in

intraglomerular pressure, by decreasing the vasoconstriction

of the efferent arteriole. Theoretically, the administration of

loop diuretics, by inhibiting Na+ reabsorption in MD, could

reduce the renal hemodynamic effect of iSGLT2. However, the

co-administration of antialdosteronic agents, by decreasing

the distal reabsorption of Na+, inhibits the connective tubule-

glomerular feedback,  inducing vasoconstriction of the afferent

arteriole and enhancing the effect of iSGLT2 on glomerular

hemodynamics.36,37,83 Thus, the combination of ACEi or ARA2,

iSGLT2 and MR antagonists could enhance the nephroprotec-

tive effects. Studies are needed to explore this hypothesis.

The effect of MR blockers on CV  events and mortality in

CKD paties is analyzed in the BARACK D84 clinical trial (Ben-

efits of aldosterone receptor antagonism in chronic kidney disease),

currently in progress, with a  3-year follow-up (Table 4).

Effect  of  MR blockade  on proteinuria  and  GFR  in  type  2 DM

Most of the referred studies included subgroups of patients

with DM2. There are, however, others who have specifically

looked at the effect of MR blockade on diabetic nephropathy.

The effect of ACEi, ARA2, antirenin drugs or a combination

of them on the different stages of diabetic nephropathy has

been evaluated.85–94 Compared with conventional antihyper-

tensive therapy, the  ARA2 reduce the  risk of kidney disease

progression and mortality. However still persists a  high resid-

ual risk for these events.93,94

The combination ACE1-spironolactone, compared to the

combination ACEi-ARA2, produces a  greater decrease in pro-

teinuria, similar effects on BP and GFR, and higher values of

serum K+.95

In DM2, it is frequent to observe reduced serum lev-

els of renin and aldosterone96,97; in  this situation, it would

seem reasonable to  predict an attenuated response to

aldosterone antagonists. However, both in animals with

experimental diabetes and in subjects with DM2, the adminis-

tration of spironolactone reduces alterations of podocyte and

proteinuria.98,99 In an experimental model of diabetic rats with

hypoaldosteronism, the administration of spironolactone pre-

vents oxidative stress, podocyte apoptosis and proteinuria.

in vitro, glucose, through MR,  increases NADPH oxidase activ-

ity, ROS generation and SGK1 expression, producing podocyte

damage, all of this is inhibited by spironolactone.100 The

increased activity of podocyte AS and Rac1 could mediate

the activation of MR by glucose, independent of the systemic

aldosterone.28,29,101,102 Therefore, even in situations of low

plasma aldosterone values, the administration of MR  antag-

onists may  be  useful for renal protection.

Several meta-analyzes showed that in subjects with dia-

betic nephropathy the co-administration of an aldosterone

antagonist with ACEI or  ARB2, versus monotherapy with

ACEI or ARB2, reduced albuminuria and BP, in addition to

the increased risk of hyperkalemia, which was  lower with

the antagonist finerenone. of 3rd generation aldosterone

antagonist103,104 (Table 3).

Although the cited studies have some limitations, it can be

concluded that in mild-to-moderate diabetic and non-diabetic

CKD (stages 2–3) with proteinuria, the addition of aldosterone

antagonists to ACEI or ARB2, compared with monotherapy

with ACEI or ARB2, reduces proteinuria and BP, and increases

the risk of hyperkalemia.

In patients with DM2, prevention of the development of

nephropathy is  very important. Adequate metabolic control,

BP  values, weight, ACEi or ARA2 and iSGLT2 are effective

in reducing the  appearance of albuminuria in patients with

DM2.105–107 In the  PRIORITY clinical trial (Proteomic predic-

tion and renin angiotensin aldosterone system inhibition prevention

of early diabetic nephropathy in  type 2 diabetic patients with

normoalbuminuria),108 1175 subjects with DM2  and normoal-

buminuria were classified, using a urine proteomic biomarker

pan (CKD273), at high and low risk of developing albumin-

uria. 216 subjects classified as  high risk were randomized

to spironolactone more  conventional therapy 25 mg/day and

more  conventional therapy placebo. The follow-up was 2.57

years and the primary endpoint was the development of albu-

minuria. The results were presented at the  55th meeting of the

European Association for the Study of Diabetes (EASD), held in

Barcelona in September 2019. No significant reduction in  the

appearance of albuminuria was observed, although there was

some suggestion of benefit spironolactone from the last  year.

The serum K+ rate > 5.5 mEq/l was higher in the  spironolactone

group.

There is enough evidence about the renoprotective effect

of iSGLT2 in DM2109–111;  given in combination with ACEi or

ARA2, produces a  decrease the development and progres-

sion of nephropathy in DM2. There are pathophysiological

considerations, even with more  argumentative force than

those discussed in CKD, which raise the possibility that

the triple combination of aldosterone antagonists, ACEIs
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Table 3 – Meta-analysis on renal effects and mortality of antialdosterone drugs in  CKD.

Non-diabetic and diabetic CKD (anti-aldosterone agents  added to ACEi or ARA2 vs. ACEi or  ARA2)

Author/year No. studies/No.

subjects

Type of CKD Median month

follow-up (IQR)

Antidosterone

drug

�Alb/creat.

mg/g × (95% CI)

�GFR

ml/min/1.73 m2 ×

(95% CI)

�SBP/DBP

mmHg × (95% CI)

Hyperkalemia

RR (95%  CI)

Navaneeth a  et  al., 2009 77 a 11/991 DN/NDN 6  (10) 9: Spir. 2: Eple. –0.80  (–1.3; –0.3)c –0.70  (–4.3, 3.3)d –3.4 (–5.1, –1.7)/–1.8

(–2.9, –0.6)

3.06 (1.26−7.41)

Bolignano et al., 2014 78 a 27  /1549 NDN/DN 3.5 (10) 22:  Spir 5: Eple. –0.61  (–1.1; –0.1)c –2.55  (–5.7, 0.5) d –3.4 (–5.0, –1.8)/–1.7

(–2.8, –0.6)

2.00 (1.25−3.2)

Currie et  al., 201679 19/2016 NDN// DN  4  (10) 14:  Spir.  5: Eple –31  (–35; –37)d –3.15  (–5.4; –0.9) –5.7 (–9.0, –2.3)/–1.7

(–3.4, –0.1)

3.21 (1.19−8.71)

Sun et al., 2017103 18/1786 DN 3  (7) 15:  Spir.  2: Eple –216 (–409; –22)  4.32 (–3.6, 12.2) –4.8 (–9.5; –0.16)/–3.3

(–5.9; –0.56)

3.74 (2.30−6.09)

Zuo and Xu, 2019104 17/1838 DN 3  (9) 13:  Spir.  2: Eple −202  (-580; 175) –2.1 (–5.2, 1.0) 5.06 (–0.74, 10.9)/1.60

(0.26,  2.96)

Esp.:  4.58 (2.6−8.0), epl.:

2.81 (1.0−7.7),  fin.: 2.22

(0.1−38)

Advanced CKD on dialysis therapy (antialdosteronic drugs vs.  placebo or  conventional therapy)

Author/year No. studies/no.

subjects

Median month

follow-up (IQR)

Antidosteronic CV mortality

RR (95% CI)

All-cause

mortality RR

(95% CI)

Hyperkalemia

RR  (95% CI)

RR

gynecomastia

(95% CI)

Li et al., 2019117 10/1172 6  (18) 9: Spir. 1: Eple. 0.42 (0.26−0.65) 0.46 (0.32−0.66) 1.70 (1.0−2.9)  8.0 (2.4−26)

Quach et  al., 2016116 9/829 6  (20) 8:  Spir. 1: Eple 0.34 (0.15−0.75) 0.40 (0.23−0.69) 3.05 (1.2−7.7)  5.6 (1.3−24)b

Alb/creat: urine albumin/creatinine; ARA2: angiotensin II receptor antagonist; IQR: interquartile range; Eple: eplerenone; CKD: chronic kidney disease; Spir: spironolactone; ACEi: angiotensin converting

enzyme inhibitor; DN:  diabetic nephropathy; NDN: non-diabetic nephropathy; SBP:  systolic  blood pressure; DBP: diastolic blood pressure; RR (CI): relative risk  (confidence interval).
a Some  of the included studies use ACEi + ARA2 as a  comparison.
b only 1 of the studies.
c g/24 h.
d Percentage reduction in proteinuria or albuminuria.
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Table 4 – Phase III clinical trials on mineralocorticoid receptor blockers in CKD, currently in progress.

Identifier/acronym/query date Study population Drugs compared Objective 1

Eudract:

2012-002672-13/BARACK

D/12-.04-202084

Stage 3b  CKD (eGFR

30−44 ml/min/1.73 m2)

Conventional

therapy + spironolactone

25  mg/day vs. conventional

therapy

Mortality and CV  events

NCT01848639/ALCHEMIST/12-

.04-2020118

Advanced CKD in

hemodialysis + DM2 or ↓ EF or

history of  CV event or LVH

Spironolactone 25 mg/day vs.

placebo

Non-fatal MI/non-fatal

stroke/acute coronary

syndrome/hospitalization for

HF/CV death

NCT03020303/ACHIEVE/04-12-

2020119

Advanced CKD in dialysis Spironolactone 25 mg/day vs.

placebo

CV death/hospitalization due

to HF

Eudract:

2015-002168-17/FINESSE HF

04-12-2020125

CHF with reduced EF +  DM  or

CKD

iECA or ARA2 +  finerenone

10−20 mg/day vs. iECA or

ARA2+ eplerenone

25−50 mg/day

CV death/hospitalization due

to HF

NCT02540993/FIDELIO-DKD/04-

12-2020149

DM2 with diabetic kidney

disease and maximum

tolerated dose of  ACEI or ARA2

Finerenone 10−20 mg/day vs.

placebo

Development of  advanced

CKD/sustained ↓ in eGFR ≥

40%/renal death

NCT02545049/FIGARO-DKD/12-

04-2020150

DM2 with diabetic kidney

disease and maximum

tolerated dose of  ACEI or ARA2

Finerenone 10−20 mg/day vs.

placebo

CV death/non-fatal CV events

ARA2: angiotensin II receptor antagonists; CV: cardiovascular; DM: diabetes mellitus; DM2: type 2 diabetes mellitus; CKD: chronic kidney disease;

EF: ejection fraction; eGFR: estimated glomerular filtration rate; LVH: left  ventricular hypertrophy; CHF: congestive heart failure; HF: heart failure;

iECA: angiotensin converting enzyme inhibitors; MI: myocardial infarction.

or ARA2 and iSGLT2 offers greater protection in diabetic

nephropathy.33,34,82,83

MR  blockade  in  CKD  patients  on dialysis  therapy

CKD patients on HD frequently present vascular calcifications.

In a small study of 5 patients on HD the administration of

spironolactone 50 mg/day for 3 years produced a significant

decrease in aortic calcifications.112

In CKD patients on peritoneal dialysis (PD), biopsy of the

peritoneum showed that the administration of 25 mg/day

of spironolactone was associated with a  reduction in  the

amount of type IV collagen and CD20 lymphocytes in the

peritoneum.113 A lesser degree of fibrosis which improves peri-

toneal function in these patients.

Apart from these facts, the  use of aldosterone antagonists

in CKD patients treated with dialysis is relevant since it has

been demonstrate an association between plasma aldosterone

levels and mortality, including sudden death.114

One of the largest clinical trials is the  DOHAS (Dialysis out-

comes heart failure aldactone study),115 in which 309 subjects on

HD were randomized to receive spironolactone 25 mg/day or

conventional therapy during 3 years. It  was observed that in

the spironolactone group there was a  significant reduction

in mortality or admissions for CV events 95%, from; p (HR

0.40; 95% CI, 0.20–0.80; p = 0.017).A 1.9% of the patients treated

with spironolactone had severe hyperkalemia and 10.2% had

gynecomastia or mastodynia.

Similar results were obtained in  2  metaanalysis that

included HD and PD patients in  which the  effect of aldosterone

antagonists was compared with placebo or conventional

therapy116,117 (Table 3).

The great reduction in CV  events and total mortality

achieved by aldosterone antagonists in  dialysis CKD patients

on dialysis is  prominent when compared to  the observed in

CKD subjects who are not on dialysis. However, the limita-

tions of the included studies must be  taken into consideration

(open design, small number of patients, short follow-up, few

events of CV mortality, as well as  high relative risk variability

demonstrated by sensitivity analysis). All this make us  think

that, currently, there is no definitive evidence of a  benefit of

MR antagonists in dialysis patients. There are  two randomized

trials, currently underway, may  provide more  certainty: one

of them, ALCHEMIST (Aldosterone antagonist chronic hemodyali-

sis interventional survival trial), includes 825 high-risk vascular

subjects with kidney failure on HD. Its duration will be 2 years

and the primary objective is to analyze the effect of spironolac-

tone 25 mg/day versus placebo on CV death and events.118 The

other trial, ACHIEVE (Aldosterone blockade for health improvement

evaluation in end-stage renal disease), tries to determine whether

spironolactone 25 mg/day, as compared with placebo, reduces

mortality and hospitalization due to heart failure (HF) in 2750

patients with CKD on dialysis treatment119 (Table 4).

MR  antagonists  in  HF  with  CKD

The benefits of MR antagonists in patients with heart fail-

ure with reduced eyection fraction (EF) are well established.7–9

Even in HF with preserved EF, MR antagonists can reduce

admissions for heart failure.120 More  than 50% of patients with

heart failure have CKD and their mortality increases with the

decrease in GFR.121 A large percentage of patients with heart

failure and CKD do not receive MR blocker therapy because of

the concern of hyperkalemia.122 In the RALES trial, the rela-

tive risk of total mortality and hospitalization for heart failure

in subjects treated with spironolactone was similar in those

with and without a  decrease in  GFR (0.68, 95% CI, 056−0.84 and

0.64; 95% CI, 0.52−0.72 vs 0.71, 95% CI, 0.57−0.90 and 0.67, 95%
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CI, 0.56−0,81, respectively). The reduction of absolute risk for

mortality and admission for heart failure was greater in the

presence of renal failure. As expected, the aldosterone antag-

onists produced hyperkalemia more  frequently if the GFR was

reduced (25.6% vs 15.4%)123.

Non-steroidal MR blockers with a  better safety profile (less

hyperkalemia) and new intestinal K+ linkers may  facilitate

the use of aldosterone antagonists in  CKD patients with heart

failure.121,124

The ongoing FINESSE clinical trial compares the effect of

finerenone versus eplerenone on CV mortality and admission

for heart failure in  subjects with chronic heart failure with

reduced EF and DM-2 or CKD125 (Table 4).

MR  antagonists  and  hyperkalemia

In contrast to the consistent evidence of the  CV  and mortality

benefits of aldosterone antagonists in cardiology7–9,  there are

few specific studies of the effect of these drugs on these events

in nephrology. It is  possible that one of the hyperkalemia,

especially in situations of renal failure, has been a  constrain

for the frequent use of these drugs in CKD.

As observed in clinical trials and in  real life studies, the

combination of aldosterone antagonists with ACEI or ARA2

increases the risk of hyperkalemia.104,116,126

This fact is important since in conditions frequently asso-

ciated with abnormal regulation of K,  such as heart failure,

DM and CKD, there is a U shape relationship between serum

K+ and mortality.127

In subjects with less capacity to excrete K+ in the urine

due to a reduction in  the diuresis, aldosterone antagonists

also increase serum K+. Compared with subjects with normal

renal function, patients with severe CKD have an  increased

expression of K+ channels (BK channels) in colon enterocytes

that increases their capacity for intestinal elimination of K+.128

Aldosterone stimulates colonic K+ secretion through BK chan-

nels, secretion that is inhibited by spironolactone.129,130

The association of aldosterone antagonists with ACEI or

ARA2 contributes to  hyperkalemia, but in  these patients there

may also concur other causes of elevated serum K+.131

Given the occurrence of hyperkalemia in subjects who

receive RAAS blockers for processes in which they have

shown benefit, frequently the dose has to be reduced or

even suppressed. This fact may  condition an  increase in

CV and renal events, and mortality.132 The use of the new

oral K+ binders as patiromer and zirconium cyclosilicate is

likely to improve tolerability and minimize discontinuation

of RAAS133–135 blockers. On the other hand, the  new non-

steroidal aldosterone antagonists induce less hyperkalemia

than the classic antagonists.136

Nonsteroidal  aldosterone  antagonists

Most studies with aldosterone antagonists have used the

classic steroid antagonists: spironolactone, which has low

specificity of action on MR,  and eplerenone, which is more

selective.

Nonsteroidal aldosterone antagonists have a different

chemical structure from that of steroids, which determines

differences in physicochemical properties, pharmacological

actions, tissue penetration and distribution, the mode of bind-

ing to the ligand and the ability to bind to co-regulators, among

others.137 All this may condition special effects on organ pro-

tection and attenuation of adverse effects.

To  date, 7 nonsteroidal aldosterone antagonists has  been

tested in clinical trials in different phases, some of them

being discontinued for various reasons. Others have com-

pleted phase 1 trials or are recruiting patients for phase

2.138–141

The most advanced nonsteroidal aldosterone antago-

nists are: apararenone (MT3995, Mitsubishi Tanabe Pharma

Corporation, Osaka, Japan), exaserenone (CS3150, Exelisis,

California, USA, and Daiichi Sankio, Tokyo, Japan) and

finerenone.

Aphase 2 clinical trial with Apararerone has completed

in subjects with diabetic nephropathy.142 Esxerenone, whose

maximum 50%  inhibitory concentration (IC50)  of MR  transcrip-

tional activation is 9.4 nM,  is a  more  potent, more  selective

and specific inhibitor than spironolactone and epleronone. In

a randomized clinical trial, Esxerenone has been shown to be

effective and well tolerated in patients with HTN.143

The finerenona has an IC50 of 18 nM (much lower than

spironolactone and eplerenone and therefore more  powerful).

It is much more  selective for MR than spironolactone and

epleronone and, unlike those predominantly distributed in

the kidney, finerenone is  equally distributed in the kidney and

heart.136

Experimental studies show that finerenone produces

renal and vascular protection by reducing oxidative stress

and attenuating endothelial dysfunction, among other

effects.144,145

In the clinical trial ARTS (The mineralocorticoid receptor antag-

onist tolerability study), there were 782 included with heart

failure and reduced EF and CKD stages 2−3. Fineronona

5−10 mg/day, compared with spironolactone 25−50 mg/day,

produced the same effect on the  reduction of NT-pro-BNP and

albuminuria, less deterioration of renal function and less ele-

vation of serum K+ with a  lower incidence of hyperkalemia

(5% vs. 13%) 146.

In a  similar patient population, different doses of

finerenone, compared with epleronone 25−50 mg/day, pro-

duced a similar reduction in NT-pro-BNP and a lower increase

in serum K+; and in  doses of 20  mg/day, finerenone produces a

greater reduction in CV  events and mortality than epleronone.

However, as  it was a  short study, these variables were consid-

ered exploratory.147

In the test ARTS-DN (Minerlocorticoid receptor antagonist tol-

erability study- diabetic nephropathy), 823 patients with diabetic

nephropathy treated blockers of the Renin Angiotensin sys-

tem (ACEi or ARA2) were randomized to different doses of

finerenona or  placebo. The main objective was  the mod-

ification of proteinuria. Fineronone induced a  significant

dose-dependent reduction in proteinuria (50% reduction in

proteinuria in 40% of patients with 20 mg/day), with a slight

non-significant decrease in  GFR, reversible after stopping the

drug, and a decrease in BP. It  was  observed a low frequency of

hyperkalemia (K+ > 5.6 mEq/l) (1.6% of the group treated with

20 mg/day of finerenone vs. 1.5% of the placebo group).148

These are short-term studies that analyze the effect of non-

steroidal aldosterone antagonists on intermediate variables.
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Figure 2 – Mechanisms of kidney damage produced by aldosterone and the activation of the mineralocorticoid receptor (MR).

In patients with heart failure and reduced EF,  the Classic MR

antagonists have achieved benefits relative to CV  events and

mortality despite an  increase in hyperkalemia. Activation of

MR produces harmful cardiorenal effects by various mecha-

nisms that have been discussed in this review. It is  possible

that nonsteroidal aldosterone antagonists, with a  theoretical

greater cardiorenal protective capacity and with less risk of

hyperkalemia, more  benefits will be obtained in  important CV

and renal variables.

The definitive answer will be provided by 2  clinical trials

with finerenone. The FIDELIO-DKD (Finerenone in reducing kid-

ney failure and disease progression in diabetic kidney disease) trial

investigates the  efficacy of finerenone compared to placebo

in reducing major renal and CV events in subjects with DM-2

and CKD treated with ACEI or ARA2. The primary endpoint is

the time elapsed until the onset of advanced kidney disease,

decreased eGFR sustained ≥40% or renal death149.  There were

5734 patients randomized, ending the follow-up in 2020. The

study has been published recently. Finerenone reduced the

risk of the composite cardiovascular outcome compared with

placebo (hazard ratio, 0.86 [95% CI, 0.75−0.99]; p = 0.034), with

no significant interaction between patients with and with-

out CVD. The incidence of treatment-emergent adverse events

was  similar in  both arms.

The FIGARO- DKD (Finerenone in reducing CV mortality and

morbidity in diabetic kidney disease) investigates, in subjects with

DM2 and CKD, the efficacy and safety of finerenone com-

pared with placebo, to reduce clinically relevant CV and renal

events.150 The primary endpoint is the composite of CV  death,

non-fatal myocardial infarction, non-fatal stroke, and hos-

pitalization for heart failure. 7437 patients were recruited,

currently under follow-up, waiting for results in 2021.

Key  concepts

1 In addition to  the  classic sites, such as distal renal and con-

necting tubule, and colon, there are MR in other locations,

such as podocyte, mesangium, macula densa, endothelium,

vascular smooth muscle cell, myocardiocyte, adipocyte,

macrophage, among others. In certain situations, MR can

be activated by mechanisms independent of aldosterone.

2 Activation of MR by aldosterone increases distal renal

tubular Na+ reabsorption and K+ secretion. In addi-

tion to systemic hemodynamic effects (increased BP and

arterial stiffness), aldosterone modifies intraglomerular

hemodynamics by modulating the tubulo-glomerular and

connecting tubule-glomerulus feedbacks.

3  Activation of vascular MRI (endothelium, smooth mus-

cle fiber) produces increased oxidative stress, endothelial

dysfunction, fibrosis, vascular remodeling, and increased

arterial stiffness.

4  In experimental models, aldosterone and MR activation pro-

duce kidney damage by various mechanisms (Fig. 2).

5  In CKD with decreased GFR and proteinuria, there is  an

increase in plasma aldosterone values and in renal expres-

sion of MR.

6  A  high percentage of subjects with CKD treated with ACEi

or ARA2 present aldosterone leakage, which is associated

with a  reappearance or increase in proteinuria and a  greater

decrease in GFR.

7  Many  short-follow-up studies have shown that in diabetic

and non-diabetic CKD patient with proteinuria, clas-

sic aldosterone antagonists (spironolactone, eplerenone)

reduce proteinuria and increase the risk of hyperkalemia.

There are several clinical trials currently underway that

attempt to study the effect of spironolactone administra-

tion on mortality and CV events in  subjects with CKD stages

3b and 5d.

8 ACEi and ARA2, and the  association of iSGLT2, have

been shown to improve nephroprotection in diabetic and

non-diabetic nephropathy. There are pathophysiological

considerations that raise the possibility that the combina-

tion of ACEi or ARA2, iSGLT2, and MR blockers may  enhance

nephroprotection.

9  Compared with steroidal MR  blockers, the more mod-

ern non-steroidal MR blockers have higher potency and

selectivity, and produce less elevation of serum K+. The

underway clinical trials (FIGARO-DCK and FIDELIO-DCK just

completed) will determine whether in subjects with DM2

and nephropathy and with a  maximum tolerated dose of

ACEi or ARA2, the non-steroidal MR blocker, finerenone,

10−20 mg/day, reduces mortality, CV events and the pro-

gression of kidney disease.
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