
445

NEFROLOGIA. Vol. XV. Número 5. 1995

ORIGINALES

Role of Endogenous Nitric Oxide. Evidence
for a Nitric Oxide (NO)-Sensitive Regulation
of Tubule Na Transport. Contribution of Atrial
Natriuretic Peptide 99-126 1

J. C. Rodríguez Pérez, J. L. Troy, J. R. Neuringer y B. M. Brenner
Renal Division and Department of Medicine, Brighan and Women’s Hospital, The Harvard Center for Harvard Medical School, Boston, MA.

Correspondencia: Dr. José Carlos Rodríguez-Pérez.
Servicio de Nefrología-Unidad de Investigación.
Hospital Ntra. Sra. del Pino.
35005 Las Palmas de Gran Canaria España.

SUMMARY

Preliminary studies have suggested that nitric oxide (NO) control blood pressure
in the basal state and plays a role in the water and sodium handling by the kidneys.
Inhibition of NO synthesis with competitive L-arginine analogues leads to increa-
sed renal vascular resistance and raised systemic and glomerular blood pressure.
We questioned whether the effects of NO synthase inhibition, such as NG-nitro L-
arginine methyl-ester (L-NAME) interferes with the disposal of an acute NaCl load
in chronically NO-blocked (N = 8) anesthetized Munich-Wistar rats compared to
controls (N = 6). Significant systemic hypertension and a marked renal vasocons-
triction was accompanied with a decline in renal plasma flow, without changes in
glomerular fi ltration rate, with fi ltration fraction thus being increased in the NO-
blocked rats. In addition, we observed a marked absolute and fractional excretion
of sodium without influences in potassium excretion. These observations could
suggest a pressure-natriuresis mechanism plus a reduction in tubular reabsorption
of sodium, somewhere in the distal nephron through an NO-sensitive mechanism
for regulating tubule Na transport. In an orally L-NAME pretreated rats (N = 6), the
effects of ANP 99-126 administration resulted in a transient decrease of RPF (4.22
± 0.54 mL/min at 60 min) compared with control (N = 5: 6.37 ± 0.77 mL/min at 60
min), with the consequent increase in filtration fraction in the former group. MAP
and RVR were maintained without significative changes in each group during the
experiment, though L-NAME pretreated rats showed a significant elevation as com-
pared with control. The infusion of ANP 99-126 (0.01 µg/Kg/min) resulted in an 46-
fold increase in urinary sodium excretion in the L-NAME pretreated rats, as compa-
red w i th a 26-fold increase in control  rats. However, fractional  and absolute
potassium excretion was significantly higher in the control rats.

Key words: N itric oxide. N atriuresis. Atrial natriuretic peptide. L-N AM E
(Nitro-L-arginine methyl ester).

1 Portion of this study were presented at the 25th Annual Meeting of the American Society of Nephrology, Baltimore, MD, in November
1992 and has been published in abstract form (J Am Soc Nephrol 1992; 3:818).
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Acethylcholine (ACh)-induced relaxation of arte-
ries is endothelium-dependent and the relaxation is
mediated through the release of endothelium-derived
relaxing factor(s) (EDRF) 1, 2. Subsequent studies sug-
gested that at least one EDRF is nitric oxide (NO) 3, 4.
Particularly, the association of ACh-induced vasodi-
latation and the release of nitric oxide has been de-
monstrated in the isolated perfused rabbit heart 5. The

synthesis of NO from L-Arginine has been proposed
to represent a widely expressed process6. NO, much
like oxygen is actually a gas with an ultrashort half-li-
fe (less than 5 seconds in biological tissues) that is
sparingly soluble in aqueous medium and functions
biologically as a molecule in solution.

Nitric oxide which is generated from L-Arginine by
the constitutive type I nitric oxide synthase (NOS), a

PAPEL DEL OXIDO NITRICO ENDOGENO. EVIDENCIA DE UN MECANISMO
REGULADOR (NO)-SENSIBLE. CONTRIBUCION DEL PEPTIDO NATRIURETICO

ATRIAL 99-126

RESUMEN

Estudios previos han sugerido que el óxido nítrico (NO) controla la presión ar-
terial en situacion basal, al igual que interviene en el manejo del agua y del sodio
por parte del riñón.

La inhibición de la síntesis del óxido nítrico con análogos de la L-arginina, en
este caso con L-NAME (Nitro-L-arginina metiléster), provoca un incremento de la
presión arterial sistémica y glomerular junto a una importante elevación de las re-
sistencias vasculares renales. Para analizar si los efectos de la inhibición crónica
de la óxido nítrico sintetasa interfiere con el manejo en la excreción de una sobre-
carga de sodio, hemos utilizado ratas Munich-Wistar a las que se les ha adminis-
trado L-NAME (100 mg/L) en el agua de bebida diariamente. El experimento fue
llevado a cabo en ratas anestesiadas. El grupo tratado con L-NAME (n = 8) mostró
frente al  grupo de ratas controles (n = 6) una marcada vasoconstricción renal,
acompañada de hipertensión arterial sistémica y disminución del flujo plasmático
renal, sin cambios en el filtrado glomerular y elevada fracción de filtración. La ex-
creción absoluta y fraccional de sodio se encontró aumentada sin modificaciones
en la eliminación de potasio, lo que podría sugerir la existencia de no sólo un me-
canismo presión-natriuresis, sino también de una reducción en la reabsorción tu-
bular de sodio en algún lugar de la nefrona distal. Este fenómeno sugeriría un me-
canismo óxido nítrico sensible que regulase el transporte tubular de sodio.

En una segunda parte del experimento, un nuevo grupo de ratas pretratadas
crónicamente con L-NAME oral (n = 6) fueron expuestas a la administración de
factor natriurético auricular de rata (ANP 99-126), frente a un grupo control no
pretratado con L-NAME (n = 5). Se encontró una disminución significativa del flujo
plasmático renal y elevación de la fracción de filtración en el grupo pretratado con
L-NAME. La presión arterial sistémica y las resistencias vasculares renales no se
modificaron a lo largo del estudio en cada grupo de animales, aunque estaban sig-
nificativamente más elevadas en el grupo que recibió L-NAME respecto al grupo
control (p < 0,001 y p < 0,05, respectivamente, a los 180 minutos del experimen-
to). La administración de ANP 99-126 a las dosis utilizadas provocó una excreción
absoluta de sodio 46 veces superior a la basal en el grupo tratado previamente con
L-NAME. Por el contrario, la excreción absoluta y fraccional de potasio fue signifi-
cativamente más elevada (p < 0,05) en el grupo no tratado previamente con L-
NAME.

Estos resultados sugieren una atenuación del efecto kal iurético del ANP en
aquellos animales previamente tratados con L-NAME, datos que apoyarían la exis-
tencia de mecanismo NO-sensible a nivel tubular.

Palabras clave: Oxido nítrico. Natriuresis. Factor natriurético auricular. L-NA-
ME (Nitro-L-arginina metiléster).
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Ca2+ /calmodulin-dependent enzyme 7, stimulates in-
creases in cGMP within the isolated aorta and in vas-
cular smooth muscle cells and platelets 8-10. The in-
crease occurs vi a stimulati on of the soluble, or
citosolic guanylate cyclase in an autocrine or paracri-
ne type of action 11.

In l ight of the evidence indicating that intrarenal
infusions or either ACh or bradykinin, endothelium-
dependent vasodi lators that increase NO synthesis
and release, elicit an increase in sodium excretion as
well as renal vasodilation 12, it was expected that the
inhibition of NO synthesis would result in a decrease
in sodium excretion as well as renal vasoconstriction.

To try to examine some of the systemic and intrare-
nal effects of NO in normal animals, several investiga-
tors have given the animals different L-Arginine analo-
gues as specific substrate competitors 12-20. Systemic
blockade of EDRF/NO synthesis with these L-arginine
analogue increases both arterial pressure (AP) and re-
nal vascular resistances in anesthetized and conscious
animals 21-24. Bayl is et al 24, have demonstrated in
conscious rats that the decrease in renal plasma flow
(RPF) caused by inhibition of EDRF/NO synthesis was
accompanied by a minor decrease in glomerular fi l -
tration rate (GFR), resulting in an increase in filtration
fraction (FF). The same authors based on these obser-
vations describe a new model of systemic hyperten-
si on w i th gl omerul ar capi l l ary hypertensi on 25.
Variable effects of NO synthesis inhibition on sodium
excretion have been reported. Several authors have
reported that NO synthase inhibitors in vivo induces
natriuresis and diuresis15, 19, 24, 26, 27. Although some in-
vestigators have suggested that the increased excre-
tion of sodium and water during NO inhibition is due
to «pressure natriuresis» 16-18, 28, others have hypothesi-
zed a proximal direct tubular action 27, or a distal tu-
bular action of the NO synthase inhibi tion 15, 19, 24.
Navarro et al 29, used increasing concentrations of L-
N AM E i n the dri nki ng w ater for f i ve w eeks, i n
Sprague-Dawley rats, and only found blood pressure
elevation without changes in sodium excretion or diu-
resis.

In a preliminary study, data from our laboratory 19

in normal and DOCA-salt hypertensive rats L-NAME
induced natriuresis with a minimal kaliuretic respon-
se, suggesting a terminal nephron site of action of this
nitric oxide synthesis inhibitor.

There is a constant controversy about the difficulty
in separating direct renal effects of NO synthesis inhi-
bition from systemic hemodynamic effects in the va-
rious experimental models.

In view of this apparent discrepancy, the purpose
of the present experiment was twofold. Firstly, to in-
vestigate the effects on renal hemodynamics and ex-
cretory function in anesthetized rats, of chronic NO
synthesis inhibition on the response to an acute NaCl

load. Since NG-nitro-L-arginine is not readily soluble
in water, we used NG-nitro-L-arginine methyl ester (L-
NAME) an easily dissolved and orally active NO inhi-
bitor 25, 30. Secondly, we explore the role of ANP 99-
126 (atri al  natri ureti c pepti de 99-126) i n blood
pressure alteration, natriuresis and kaliuresis in L-NA-
ME pretreated rats. Some of the ANP described ac-
tions include an elevation of GFR and renal sodium
excretion, relaxation of contracted vasculature in vi-
tro, and reduction of systemic arterial blood pressure
in vivo. Therefore, the present study was undertaken
to evaluate the effects of ANP on the systemic and re-
nal circulation under NO syntesis inhibition.

Since NO is a very labile substance, direct measu-
rement of NO has proven to be difficult, especially in
vivo experiments. We must limited as in other expe-
riences to interpretation of the responses to NO syn-
thase inhibitors.

Materials and methods

Studies were performed on 25 male Munich-Wistar
rats (220-300 g body weight) from the Charles River,
Wilmington, Mass. All experimental procedures were
designed in accordance with the recommendations
from the Declaration of Helsinki  and the Guiding
Principles in the Care and Use of Animals approved
by the Counci l  of the Ameri can Physi ol ogi cal
Society. Animals w ere maintained on a 12-hour
l ight/dark cycle and provided normal rat chow and
tap water ad libitum. In the first experiment protocol
(Study I) eight rats (Group Ia) were placed on oral
L-NAME (100 mg/L in drinking water, changed daily)
for a continuous 10 to 15 day period. After 5 to 7
days of habituation, systolic blood pressure was re-
corded every two days in al l  rats by the awake tai l
cuff method 31, unti l  hypertensive state was confir-
med. A control group of six rats (Group Ib) aged over
a similar time period differed only in not receiving L-
NAME (figure 1).

The day of the experiment, rats were anesthetized
wi th intraperi toneal  thiobarbi turate, Inactin (BYK
Gulden, Konstans Fed Rep. Germany) (100 mg/kg
body wt.) and placed on a temperature-regulated mi-
cropuncture table. Rectal temperature was maintai-
ned at 37 ± 1.0 °C. An indwelling polyethylene cat-
heter (PE-50) was placed in the left femoral artery for
continuous moni toring of mean arterial  pressure
(MAP) as well as for collecting blood samples.

MAP was measured utilizing a pressure transducer
connected to a direct recorder (Gould Inc. Cleveland,
OH. with a thermal writing recorder 8000-S, model
8188-2202). After a baseline blood sample was co-
l lected and tracheostomy, both yugular veins were
catheterized with PE-50 polyethylene tubing, one for



continuous iv infusion throughout the experiment of
i soncoti c p l asma obtai ned from normal  adul t
Munich-Wistar rats to maintain an euvolemic condi-
tion and for a sustained infusion of p-aminohippurate
(400 µl) and inul in (10 ml) solution for the measu-
rement of renal plasma flow (RPF) and glomerular fil-
trati on rate (GFR). The l eft ki dney w as exposed 
through a ventral midline incision and its surface was
moistened wi th sal ine throughout the experiment.
The left ureter was cannulated with PE-10 tubing and
the bladder vented by a curved 19-gauge needle.
Urine was collected in a preweighed plastic vial for
gravimetric determination of urine flow rate. After a
60-min equil ibration time, when plasma inulin and
PAH concentrations had plateaud, a control observa-
tion period was begun in which two 15 min urine co-
llections were made and arterial blood samples were
taken at the midpoint of each urine.

After completion of control measurements, in Study
I the second yugular vein was used with an isotonic in-
fusion of NaCl (5 % BW in 60 min). Six more 30-min
urine collections with midpoints bloods were taken.

In Study II, six rats (Group IIa) previously placed on
oral L-NAME (100 mg/L in drinking water during a
continuous period of 10-15 days) followed a similar
surgical protocol to those of Study I with the differen-
ce that,  dur i ng the experi mental  per i od 0,01
µg/Kg/min was infused in saline (1.5 µg/mL), of puri-

fied synthetic rat atrial natriuretic peptide (ANP 99-
126), from Peninsula Laboratories (Belmont CA), du-
ring a 60-min period (figure 1). The dose utilized was
previously determined to yield effective natriuretic
and diuretic effects without a deleterious alteration of
rat GFR and minimal  changes in blood pressure.
Each rat received only one peptide infusion. A con-
trol group of five rats (Group IIb) differed only in not
receiving L-NAME.

Analytical procedures

Hematocrit was determined by the microcapillary
tube method. Urinary and plasma sodium and pota
ssium concentration were measured by standard fla-
me photometry. Protein concentration in femoral ar-
terial blood plasma was determined using the fluoro-
metric method 32. Inul in concentrations in plasma
and urine were measured using a macro-anthrone
method 33, and PAH concentrations were measured
by the method of Smith et al 34.

Filtration fraction was calculated as FF= GFR/RPF.
Renal vascular resistance was estimated by the ex-
pression RVR= MAP (1HCT)/RPF, where HCT is arte-
rial hematocrit. Efferent arteriolar protein concentra-
tion was estimated by the expression CE=CA/(1-FF),
where CA and CE are plasma protein concentrations
in afferent (femoral artery determination) and efferent
arterioles, respectively.

Results are presented as mean ± 1 SE. Analysis of
comparisons between groups was performed by one-
way analysis of variance. We considered a P value of
less than 0.05 to be statistically significant.

Results

Study I: Rats subjected to a NaCl load

The mean body weight of the rats used in this study
was 289 ± 4.6 g and 260.1 ± 11.6 g (NS) for groups Ia
and Ib, before placing the former on oral L-NAME.

The effect of NaCl load on mean arterial pressure,
renal vascular resistance and urinary sodium and po-
tassium excretion in rats of groups Ia and Ib is shown
in figure 2

After 10-15 days rats placed on oral L-NAME were
hypertensive. Mean arterial pressure averaged 130.5
± 2.3 in the L-NAME group, and each value was sig-
nificantly higher (P < 0.001) than the arterial pressure
of 97.7 ± 3.9 mmHg for the vehicle-treated control
rats (fig. 2A). A marked and significant elevation in
systemic MAP was maintained throughout the experi-
ment. The renal vascular resistance (RVR) increased
in parallel with MAP and maintained for more than
180 minutes (27.1 ± 1.9 and 22.0 ± 1.1 vs 13.07 ±
1.0 and 12.9 ± 0.7 mmHg/mL/min in groups Ia and
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Fig. 1.–Schematic representation of experimental protocols.

Surgical Baseline U3 U4 U5 U6    U7  U8
I/ / / / / / / / / / I- - - - - - - - I - - - - - - - - - I - - - - - - - - -I- - - - - - - -I
procedure  B1 U1 B2 U2 B3 B4 B5 B6     B7 B8

–30    min    0        min      60        min   120  min  180

STUDY I

GROUP Ia: L-NAME

NaCl 0.9 %
- - - - - - - - - - - - - - - - - - I - - - - - - - - - -I - - - - - - - - - - - -  - - - -I

0 5 % BW 60 minutes

GROUP Ib: CONTROL

NaCl 0.9 %
- - - - - - - - - - - - - - - - - - I - - - - - - - - - -I - - - - - - - - - - - -  - - - -I

0 5 % BW 60 minutes

STUDY II

GROUP IIa: L-NAME + ANP

0,01 µg/kg/min ANP
in NaCl 0.9 %

- - - - - - - - - - - - - - - - - - I - - - - - - - - - -I - - - - - - - - - - - -  - - - -I
0 60 minutes

GROUP IIb: CONTROL + ANP

0,01 µg/kg/min ANP
in NaCl 0.9 %

- - - - - - - - - - - - - - - - - - I - - - - - - - - - -I - - - - - - - - - - - -  - - - -I
0 60 minutes



NO Y REGULACION DEL TRANSPORTE DE Na

449

Ib respectively). A slight decrease in RVR was obser-
ved in groups Ia and group Ib during NaCl infusion
although it was more pronounced in the L-NAME tre-
ated rats (fig. 2B). Since the glomerular filtration rate
was unchanged in L-NAME and in the control group
of rats by NaCl infusion, RPF was significantly redu-
ced (P< 0.01) in group Ia. These hemodynamic chan-
ges yielded at 120 and at 180 min with a significant
increase in FF. No significant differences in urine out-
put was seen between L-NAME and control  group.
The magnitude of the sl ight decrease in arterial he-
matocrit was similar in groups Ia and Ib. Associated
with the pressor responses elicited by L-NAME were
a striking increase in urinary sodium excretion during
NaCl load (fig. 2C) also evident at 180 min (4.67 ±
0.4 µeq/min) and significantly higher (P< 0.05) than
the 180 min sodium excretion rate measured in the
vehicle-treated animals (3.5 ± 0.23 µeq/min). Both
groups of rats excreted with minor differences (NS)

the same sodium load throughout the experiment.
On the other hand, urinary potassium excretion did
not differ in Ia and Ib groups respectively (fig. 2D). In
group Ia mean arterial pressure and RVR had decrea-
sed somewhat by the end of the protocol (basal vs fi-
nal 130.5 ± 2.36 vs 114.2 ± 5.2 mmHg, P< 0.05, and
27.1 ± 1.9 vs 21.9 ± 1.1 mmHg/mL/min, P < 0.05
respectively), however RPF (basal vs final 2.67 ± 0.22
vs 3.1 ± 0.11 mL/min, P = NS) were unchanged over
the course of the experiment. In both groups Ia and
Ib, a significant increase (P< 0.001) in urine flow rate
and UNa.V was observed over the 180 minutes expe-
rimental period.

Study II: Rats subjected to atrial natriuretic peptide
(ANP 99-126) infusion

Arterial  hcts were simi lar between experimental
(IIa) and control (IIb) groups. There were no signifi -

Fig. 2.–Effect of NaCl load in rats of study I in the baseline and during the experimental protocol. Mean arterial pressure (A), renal
vascular resistance (B), urinary excretion rates of sodium (C), and potassium (D). * P < 0.05, ** P < 0.01, *** P < 0.001 vs baseline.
♦ P < 0.05, ♦♦ P < 0.01, ♦♦♦ P < 0.001 group Ia vs group Ib.
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cant differences in mean body weight for both group
of rats 280 ± 2.2 g (group IIb) and 280.8 ± 7.5 g
(group IIa).

Figure 3 shows the data for mean arterial pressure,
glomerular filtration rate and urinary sodium and po-
tassium excretion measured before and 60, 120 and
180 minutes after infusion of ANP in L-NAME and
vehicle-control groups. MAP slightly decreased (Fig.
3A) after ANP 99-126 infusion in L-NAME group, but
sti l l  remained signi ficantly higher than the vehicle
group (116.2 ± 2.39 vs 93.5 ± 2.2 mmHg respecti-
vely at 180 min after ANP). In control rats and in tho-
se pretreated with L-NAME coincident with the ANP
infusion, glomerular fi ltration rate increased but, re-
turn to basal levels straightaway (Fig. 3B), w ithout
any difference between IIa and IIb groups. The filtra-
tion fraction was signi ficantly higher (P< 0.01 and
P < 0.05 at 120 and 180 min respectively) in the
group IIa associated with a decreased RPF at baseline
in this group of rats (p < 0.05).

The peptide caused a significant increase in urine
flow in group IIa (P < 0.05) and IIb (P < 0.01) at 120
minutes respect to baseline as well as an increase in
urine sodium excretion (P< 0.05) and (P < 0.01) for
both groups respectively. The infusion of ANP 99-126
in group IIa animals resulted in a 46-fold increase in
urinary sodium excretion averaged 13.84 ± 2.1 and
9.67 ± 1.0 at 60 (P< 0.01) and 120 (P < 0.05) min vs
5.32 ± 1.36 and 5.56 ± 0.93 µeq/min in group IIb (a
26-fold increase in UNa.V), and each value was sig-
nificantly higher than the basal excretion rate in both
groups 0.3 ± 0.05 (group IIa) (P< 0.05) and 0.2 ±
0.09 (group IIb) µeq/min (P < 0.01) at 120 min (Fig.
3C). Fractional excretion of potassium as well as ab-
solute urinary potassium excretion (Fig. 3D) were sig-
ni ficantly higher in group IIb as compared with L-
NAME-ANP rats (IIa) at 120 min (P < 0.05) and at
180 min however, at that latest period this difference
was not statistically significant for the fractional ex-
cretion rate (P < 0.1). Thus, the «potassium sparing»

Fig. 3.–Effect of ANP (99-126) administration in control and L-NAME rats (Study II) in baseline and over the course of the experiment.
Mean arterial pressure (A), gomerular filtration rate (B), urinary excretion rates of sodium (C), and potassium (D). * P < 0.05, ** P < 0.01,
*** P < 0.001 vs baseline. ♦ P < 0.05, ♦♦ P < 0.01,♦♦♦P < 0.001 group IIa vs group IIb.
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Table I. Systemic and renal variables in anesthetized male Munich-Wistar rats studied in the basal conditions
and after chronic EDRF-Blockade with L-Name. Groups Ia (A) and Ib (B) were loaded with NaCl 5 %
BW, and groups IIa (C) and IIb (D) with ANP 99-126 (0.01 µg/kg/min) during 60 min after basal mea-
suresa

Basal 60’ 120’ 180’

L-NAME group (la) (A)

HCT (%) 46.5 ± 0.63 40.9 ± 0.65**, ♦ 40.6 ± 0.89**, ♦ 41 ± 0.85**, ♦
MAP (mmHg) 130.5 ± 2.36 ♦♦♦ 123.3 ± 3.58 ♦♦ 116.8 ± 4.23*, ♦ 114.2 ± 5.2*. ♦♦

GFR (mL/min) 0.88 ± 0.05 1.28 ± 0.09** 1.02 ± 0.04 0.96 ± 0.4
RPF (mL/min) 2.67 ± 0.22 ♦♦ 4.9 ± 0.48** 3.12 ± 0.15 ♦♦ 3.1 ± 0.11 ♦♦♦

FF 0.33 ± 0.01 ♦♦♦ 0.26 ± 0.01** 0.33 ± 0.01 ♦♦ 0 31 ± 0 01 ♦
RVR (mmHg/mL/min) 27.1 ± 1.9 ♦♦♦ 16.0 ± 1.8**, ♦ 22.5 ± 1.3 ♦♦♦ 21.9 ± 1.1*. ♦♦♦

UV (mL/min) 0.006 ± 0.0008 0.039 ± 0.005*** 0.033 ± 0.001*** 0.027 ± 0.001***
UNa.V (µEq/min) 0.39 ± 0.12 7.5 ± 1.09*** 6.55 ± 0.25***, ♦ 4.67 ± 0.4***. ♦
FE Na (%) 0.29 ± 0.09 4.4 ± 0.78*** 4.55 ± 0.24***, ♦ 3.4 ± 0.27***. ♦
UK.V (µEq/min) 1.24 ± 0.16 2.27 ± 0.15**_ 1.88 ± 0 06* 1 59 ± 0.1
FE K (%) 31.1 ± 2.87 41.8 ± 2.3* 43.9 ± 2.3**- 39.3 ± 2.0*
CA (g/dl) 5.0 ± 0.03 4.0 ± 0.08** 4.3 ± 0.1** 4.4 ± 0.1*
CE (g/dl) 7.5 ± 0.1 ♦♦ 5.6 ± 0.2** 6.5 ± 0.28* 6.4 ± 0.3*

Control group (Ib) (B)

HCT (%) 46.7 ± 0.64 43 ± 0.5* 43.5 ± 0.81* 43.6 ± 0.81*
MAP (mmHg) 97.7 ± 3.91 101 ± 4.0 98.8 ± 4.17 97 ± 4.89
GFR (mL./min) 1.01 ± 0.08 1.58 ± 0.19 1.10 ± 0.09 1.08 ± 0.06
RPF (mL/min) 4.09 ± 0.31 5.91 ± 0.49* 4.18 ± 0.2 4.26 ± 0.19
FF 0.24 ± 0.01 0.27 ± 0.04 0.26 ± 0.01 0.25 ± 0.01
RVR (mmHg/mL/min) 13.0 ± 1.0 10.0 ± 1.0 13.6 ± 1.0 12.8 ± 0.7
UV (mL/min) 0.0082 ± 0.0016 0.04.3 ± 0.005** 0.032 ± 0.002*** 0.024 ± 0.002***
UNa.V (µEq/min) 1.17 ± 0.36 8.4 ± 0.9*** 5.0 ± 0.6*** 3.5 ±i 0.23***
FE Na (%) 0.8 ± 0.2 4.2 ± 0.9* 3.4 ± 0.7* 2.3 ± 0.3**
UK.V (µEq/min) 1.31 ± 0.12 1.90 ± 0.23 1.54 ± 0.14 1.27 ± 0.11
FE K (%) 33.7 ± 4.0 37.3 ± 8.7 40.8 ± 7.2 32.7 ± 4.1
CA (g/dl) 5.0 ± 0.1 4.3 ± 0.07** 4.5 ± 0.14* 4.5 ± 0.12*
CE (g/dl) 6.7 ± 0.16 6.0 ± 0.34 6.2 ± 0.21 6.1 ± 0.17*

L-NAME-ANP group (lla) (C)

HCT (%) 46.7 ± 0.36 42.6 ± 1.79 41.3 ± 0.59**- 42.0 ± 0.4**
MAP (mmHR) 126.0 ± 1.81 ♦♦♦♦ 117.5 ± 4.63 ♦♦ 117.0 ± 3.48*, ♦♦ 116.2 ± 2.39*. ♦♦♦

GFR (mL/min) 0.91 ± 0.04 1.22 ± 0.03 *** 0.91 ± 0.14 0.90 ± 0.12
RPF (mL/min) 2.99 ± 0.18 ♦ 4.22 ± 0.54 ♦ 3.52 ± 0.57 3.39 ± 0.37
FF 0.31 ± 0.015 ♦♦ 0.31 ± 0.04 ♦ 0.26 ± 0.006*, ♦♦ 0.26 ± 0.007*. ♦
RVR (mmHg/mL/min) 22.9 ± 1.82 ♦♦♦ 17.0 ± 2.0 ♦♦ 20.6 ± 2.6 ♦ 20.0 ± 2.0 ♦
UV (mL/min 0.0054 ± 0.00047 0.065 ± 0.0092***, ♦♦ 0.026 ± 0.0046* 0.024 ± 0.0048*
UNa.V (µEq/min) 0.30 ± 0.05 13.84 ± 2.16***, ♦♦ 9.6 ± 1*, ♦ 4.39 ± 1.37*
FE Na (%) 0.22 ± 0.04 8.07 ± 1.19***, ♦♦ 6.59 ± 0.62**, ♦♦ 3.52 ± 1.04*
UK.V (µEq/min) 1.08 ± 0.12 2.0 ± 0.2**- 1.2 ± 0.20 ♦ 1.22 ± 0.12 ♦
FE K (%) 27.2 ± 1.6 44.8 ± 4.9* 34.3 ± 2.7*, ♦ 37.3 ± 3.72*
CA (g/dl) 5.18 ± 0.06 4.56 ± 0.16*, ♦ 4.62 ± 0.094*, ♦ 4.65 ± 0.095*. ♦
CE (g/dl) 7.51 ± 0.11♦♦♦ 6.87 ± 0.63 ♦ 6.24 ± 0.12**, ♦♦ 6.38 ± 0.14 *. ♦♦

Control-ANP group (llb) (D)

HCT (%) 45.9 ± 0.46 40.7 ± 0.46**- 41.2 ± 0.47** 41.1 ± 0.51**
MAP (mmHg) 85.5 ± 3.49 91 ± 3.06 93.7 ± 3.72 93.5 ± 2.21
GFR (mL/min) 0.89 ± 0.09 1.22 ± 0.04* 1.01 ± 0.04 0.85 ± 0.04
RPF (mL/min) 4.19 ± 0.47 6.37 ± 0.77* 5.03 ± 0.34 3.87 ± 0.61
FF 0.21 ± 0.02 0.20 ± 0.01 0.20 ± 0.01 0.23 ± 0.02
RVR (mmHg /mL/min) 11.4 ± 1.09 8.95 ± 1.09 11.03 ± 0.55 15.27 ± 2.28
UV (mL/min) 0.0038 ± 0.00028 0.027 ± 0.0054** 0.029 ± 0.0041** 0.024 ± 0.0020**
UNa.V (µEq/min) 0.20 ± 0.09 5.32 ± 1.36* 5.56 ± 0.9** 4.44 ± 0.38**
FE Na (%) 0.17 ± 0.07 2.95 ± 0.77* 3.81 ± 0.70** 3.76 ± 0.39***
UK.V (µEq/min) 0.72 ± 0.08 1.96 ± 0.18*** 1.90 ± 0.22*** 1.45 ± 0.11**
FE K (%) 22.0 ± 4.04 40.1 ± 3.89* 49.7 ± 4.71** 47.3 ± 2.01**
CA (g/dl) 5.03 ± 0.033 4.08 ± 0.037** 4.3 ± 0.07** 4.3 ± 0.07**
CF: (g/dl) 6.45 ± 0.18 5.1 ± 0.09*** 5.4 ± 0.07** 5.6 ± 0.2*

a Values are means ± SE. HCT, hematocrit; MAP, mean arterial pressure; GFR, glomerular filtration rate; RPF, renal plasma flow; FF, filtration fraction; RVR,
renal vascular resistance; UV, urinary volume; UNa. V, sodium excretion rate; FENa, fractional excretion of sodium; UK.V, potassium excretion rate; FE K,
fractional excretion of potassium; CA and CE, afferent and efferent arteriolar protein concentration.
Significant differences between subsequent time points and baseline within each group: * p < 0.05; ** p < 0.01; *** p < 0.001. Significant differences bet-
ween groups la and Ib and IIa IIb: ♦ p < 0.05; ♦♦ p < 0.01; ♦♦♦ p < 0.001.
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effect of ANP 99-126 was only maintained in the
control-vehicle group.

The increased renal vascular resistances in group
IIa dropped sl ightly as well as in group IIb after the
initiation of ANP 99-126 infusion. As a consequence
of the duration of the experiment RVR in group IIb
exhibits a tendency to be higher than basal levels but
without any statistical significance.

Table I illustrates the variations in the systemic and
renal parameters throughout the experiment.

Discussion

Control of vascular function by the endothelium is
quite complex and involves a balanced synthesis and
release of both vasodilator and vasoconstrictor subs-
tances35.

The important modulatory effects of nitric oxide on
regional hemodynamics and renal vascular tone have
recently been wel l  demonstrated. To examine the
systemic and renal hemodynamic effects of NO in
normal animals, most investigators have given the
animals NO synthesis inhibitors acutely 12-15, 19, 24 di-
rectly into the renal  artery, by venous infusion or
chronically in the drinking water 25, 26, 29, 36. Some dif-
ferences were observed in conscious versus anesthe-
tized rats 37-39. These differing responses were appa-
rently due to di fferent animal models or to varying
circulating levels of angiotensin II 38.

Meanwhile acetylcholine infusion to the animals
resulted in systemic hypotension and renal vasodila-
tion with diuretic and natriuretic effect 40, the admi-
nistration of NO synthesis inhibitors to animals pro-
motes a marked increase in mean arterial  pressure
and renal vascular resistance, with a decrease in re-
nal plasma flow and variable (null or minor) effects
on glomerular filtration rates with the concommitant
elevation in filtration fraction. Baylis and coworkers 25,
using 50 mg/L of L-NAME in the drinking water for a
two months period, reported a mean arterial pressure
of 136 ± 4 mmHg with 30.1 ± 5.6 mmHg/mL/min of
renal vascular resistance. Meanwhile, Ribeiro et al 36

using 10 fold higher dose over 4-6 weeks of conti-
nual NO blockade with L-NAME reported a signifi-
cantly greater hypertension. In the study presented
here, the results are compatible with those of recent
reports25, 41-43, confirming a previous suggestion, whe-
re there is a dose-dependency to the magnitude of
the systemic hypertension achieved with chronic NO
blockade. This increase in renal vascular resistance is
specifically related to the EDRF-NO synthesis inhibi-
tion. The renal  vasoconstriction observed in this
study is not due to an autoregulatory phenomena eli-
cited by the concurrent rise in systemic arterial pres-
sure (using subpressor doses of L-NAME in the drin-

king water sti l l  increases the calculated RVR; unpu-
blished observations), but rather to a greater sensibi-
lity of the vascular renal bed to L-arginine analogues
or to an angiotensin II mediated renal vasoconstric-
tion 38. The latter would be in accordance with the re-
versal decrease in renal plasma flow after the admi-
nistration of an angiotensin II receptor antagonist 37.
In the absence of high circulating levels of angioten-
sin II another possibi l i ty could be the underlying
myogenic mechanism, as suggested by Ito et al 44.
However this vasoconstriction was found to be confi-
ned to the afferent arteriole, in controversy with this
study where vasoconstriction affect predominantly
postglomerular renal vasculature, as indicated by a
signi ficant decrease in RPF w i th no al terations in
GFR.

In concordance with a Shultz and Tol ins sugges-
tion 28, concerning the difficulty to evaluate the diffe-
rent results of the effects of NO synthase inhibitors on
renal hemodynamic and excretory function, our fin-
dings are consistent with previous reports 15, 19, 24, 27.
Meanwhile Zats and De Nucci 15, and Baylis et al 24,
have suggested a possible inhibitory effect associated
with NO inhibition at the level of the distal or collec-
ting tubule, De Nicola et al 27, evidenced a possible
inhibi tory effect on proximal tubular reabsorption.
Our results demonstrate that chronic inhibition of ba-
sal EDRF/NO synthesis in anesthetized rats produces
a substantial pressor response associated with a mar-
ked natriuresis. Thus, the reduction in tubular reab-
sorption of sodium (fractional excretion of sodium
clearly elevated in group Ia without significant modi-
fication in the glomerular fi ltration rate) without any
modification in potassium secretion, must suggest the
existence of an NO-sensitive mechanism for regula-
ting distal  tubule Na transport, more than a mere
pressure natriuresis effect. These findings are compa-
tible with a recent report and indicate that, in the kid-
ney-rat the distribution of NO synthase examined by
three di fferent approaches (immunocytochemistry,
enzymatic activity and mRNA expression) revealed
the strongest signals for NO synthase in the macula
densa cells of the juxtaglomerular apparatus45. In this
regard, Neuringer et al 19, reported a significant re-
duction in fractional reabsorption of sodium in nor-
mal and DOCA-salt hypertensive rats after infusion of
L-NAME; furthermore, Radermacher et al 46, in isola-
ted perfused rat kidney believe that reduction in frac-
tional reabsorption of sodium after NO inhibition is
parti al l y due to a speci fi c tubular effect of N O .
Previously in a recent report Green and coworkers47,
have shown that 8-bromo-cycl ic GMP can also sti -
mulate the Na+-H + antiporter in renal brush border
membranes and thus increase sodium uptake.

Our observations of the effects of NO inhibition on
urine flow and urinary sodium excretion are different



from the results of some experiments in rats in which
systemic administration of NO synthesis inhibi tors
induced an antidiuretic and antinatriuretic respon-
se 16-18, 28. In view of this apparent discrepancy we
cannot provi de any sat i sfactory expl anati on.
However, this may be due to the influence of species
and strain differences, distinct methodological appro-
ach with the use of not always the same L-Arginine
analogues, or the influence of some other activated
mechanism like the release of ANP during NO-inhi-
bitors administration 48. These findings could suggest
a dissociation of the sodium excretory responses from
the hemodynamic changes during NO synthesis inhi-
bition.

A transient increase in GFR and renal plasma flow
was observed in group IIb after ANP 99-126 admi-
nistration in accordance with other studies using dif-
ferent ANP peptides 49, 50, a similar increase was ob-
served i n  the N O  synthesi s b l ocked group. In
contrast, DePriest, Zimmermann and Baylis51, using
different doses of a 28 aminoacid α rat ANP for a 60
min period to conscious unstressed rats failed to pro-
duce statistical ly significant changes in GFR with a
slight reduction in renal plasma flow and increased
renal vascular resistance although these effects were
not statistical ly significant. These and other studies
have provided significant evidence that GFR-enhan-
cing effect of ANP may result from the use of the sur-
gical ly anesthetized preparation. Al though in the
present study we do not conduct any micropuncture
studies, the increased GFR could result from the sug-
gested afferent arteriolar vasodilatation and concu-
rrent efferent arteriolar vasoconstriction 50. In the pre-
sent study, thi s w as in accordance w i th a stable
fi l tration fraction and renal  vascular resistance in
both (IIa and IIb) groups without significant modifi -
cations in MAP, probably in relation w i th the low
doses or particular properties of the peptide reached.
The high renal  vascular resistance obtained in the
group IIa after pretreatment with L-NAME, declined
slightly coinciding with an increase in renal plasma
flow after infusion of ANP 99-126 but without statis-
tical  signi ficance, in contrast w i th previous works
where ANP infusion can vasodilate renal blood ves-
sels under conditions of high vasoconstrictor tone or
where renal vasculature is precontracted with nore-
pinephrine and angiotensin II 50, 52, 53. This apparent
discrepancy could be associated with the di fferent
ANP molecule or doses used, as well as duration of
the experience.

Some investigators have proposed that the increase
in GFR alone can account for the natriuresis and diu-
resis induced by ANP 53,54, whereas others supported
that ANP also directly alters tubule Na+ and water re-
absorption 55-57. As in our study, ANP 99-126 has
been capable of stimulate natriuresis and diuresis

without producing detectable and maintained altera-
tions of GFR 56, 58, suggesting that this may be due to
the lower doses used. At higher dosis, an increase in
GFR is marked 56, 59. Maack 60, has argued that even
during brisk natriuresis, undetectable changes in GFR
could contribute to the proper natriuresis observed
with ANP administration. Nevertheless, several ob-
servations like in toadfish 61, a species that lacks glo-
meruli, ANP induces an accentuated natriuresis, indi-
cating that changes in GFR alone do not account for
the important natriuresis and diuresis observed in res-
ponse to ANP infusion.

As was indicated in Table I, potassium excretion
was much more variable and much less pronounced
than sodium excretion rate. The absolute and fractio-
nal potassium excretion increased in groups Ia and
Ib, but without statistical  significance between the
vehicle-control group and L-NAME treated group. In
contrast, the L-NAME prevented the increased rate of
potassium excretion reached with the use of ANP 99-
126 alone in the study II. Such findings suggest that
L-NAME blunted the action of ANP 99-126 at distal
portions of the nephron, however, there is also little
evidence of an action of ANP in the distal or collec-
ting duct. Presently, the in vivo studies do not assess
whether the hormone acts directly on the epithelial
cells or alters the transepithelial driving forces62, 63,
and whether these segments are devoid or not of re-
ceptors for ANP64.

The current study therefore suggests, by the use of
the NO synthase inhibi tor L-NAME, that NO is an
important modulatory agent in both the renal vascu-
lar and tubular function, and probably independent
of changes in the renal perfusion pressure.

In conclusion, the present investigation indicates
that EDRF/NO exerts a substantive role in maintai -
ning the normally low renal vascular tone, the renal
vasoconstriction observed in this study is not due to
an autoregulatory phenomena elicited by the concu-
rrent rise in systemic arterial pressure. The use of L-
NAME an orally active NO-synthase inhibitor was fo-
l l ow ed i n our model  w i th a marked natr i uret i c
response without any modification in the potassium
excretion rate, suggesting an NO-sensitive mecha-
nism for regulating distal tubule Na-transport. With
the use of the peptide AN P 99-126 a potent and
maintained diuresis and natriuresis was observed
even in the L-NAME pretreated group with minimal
and excretion response the L-NAME treated transient
elevations in GFR. The potassium reached with this
peptide was attenuated in animals. Further studies
are needed to clarify the exact mechanism responsi-
ble for NO induced changes in tubular function, and
the physiological role of this particular ANP 99-126
peptide in the regulation of salt, water and potassium
homeostasis.
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