

Journal Pre-proof

Pain, Quality of Life, Work Ability and Psychosocial Well-Being in Living Kidney Donors: A Scoping Review

Giada De Colle Beatrice Mazzoleni Giovanni Cangelosi Marco
Sguanci Sara Morales Palomares Franca Barbic Prof Camilla
Crippa Francesco Reggiani Marta Calatroni Daniela Cattani Diego
Lopane Giuliano Anastasi Stefano Mancin

PII: S0211-6995(26)00003-2

DOI: <https://doi.org/doi:10.1016/j.nefro.2026.501487>

Reference: NEFRO 501487

To appear in: **NEFROLOGÍA**

Received Date: 17 December 2024

Accepted Date: 5 January 2026

Please cite this article as: Colle GD, Mazzoleni B, Cangelosi G, Sguanci M, Palomares SM, Barbic F, Crippa C, Reggiani F, Calatroni M, Cattani D, Lopane D, Anastasi G, Mancin S, Pain, Quality of Life, Work Ability and Psychosocial Well-Being in Living Kidney Donors: A Scoping Review (2026), doi: <https://doi.org/10.1016/j.nefro.2026.501487>

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form. As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early version to give early visibility of the article. Please note that Elsevier's sharing policy for the Published Journal Article applies to this version, see: <https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article>. Please also note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2026 Published by Elsevier España, S.L.U. on behalf of Sociedad Española de Nefrología.

Dolor, Calidad de Vida y Bienestar Psicosocial en Donantes de Riñón Vivos: A Scoping Review

Pain, Quality of Life, Work Ability and Psychosocial Well-Being in Living Kidney Donors: A Scoping Review

Pain, Quality of Life and Psychosocial Well-Being in Living Kidney Donors: A Scoping Review

Giada De Colle¹ and Beatrice Mazzoleni², Giovanni Cangelosi³, Marco Sguanci⁴, Sara Morales Palomares⁵, Franca Barbic^{1,2,*}, Camilla Crippa⁴, Francesco Reggiani^{1,2}, Marta Calatroni^{1,2}, Daniela Cattani¹, Diego Lopane¹, Giuliano Anastasi⁶ and Stefano Mancin^{1,2}

¹ IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano Milan, Italy

² Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele – Milan, Italy

³ Units of Diabetology, ASUR Marche, 63900 Fermo, Italy

⁴ A.O. Polyclinic San Martino Hospital, Largo R. Benzi 10, 16132 Genova, Italy

⁵ Department of Pharmacy, Health and Nutritional Sciences (DFSSN), University of Calabria, 87036 Rende, Italy

⁶ Department of Trauma, AOU G. Martino University Hospital, 98124 Messina, Italy

*** Corresponding Author:**

Prof. Franca Barbic

Department of Biomedical Sciences, Humanitas University,

Via Rita Levi Montalcini 4, 20090 Pieve Emanuele – Milan, Italy

Correspondence: franca.barbic@hunimed.eu

Resumen

Fundamento: La Enfermedad Renal Crónica (ERC) es una condición progresiva caracterizada por alteraciones estructurales y funcionales en los riñones, que afecta al 10-15% de la población mundial. El trasplante de riñón de donantes vivos se considera el tratamiento más eficaz para la ERC, aunque los donantes pueden enfrentar reducciones en su salud general y capacidad para trabajar después de la donación.

Objetivos: El objetivo de este estudio es evaluar la calidad de vida (Cv), el dolor y la salud mental

de los donantes adultos de riñón vivos.

Métodos: Se realizó una revisión exploratoria utilizando las bases de datos PubMed/Medline, Embase, CINAHL y Cochrane Library. La revisión siguió el marco de trabajo del Joanna Briggs Institute (JBI) y se ajustó a las directrices PRISMA-ScR. El protocolo para esta revisión fue registrado en el Open Science Framework. Se evaluó el riesgo de sesgo y la calidad de los estudios utilizando las listas de verificación de JBI.

Resultados: Con base en el análisis de 5069 registros, se incluyeron 10 estudios en esta revisión exploratoria. Los resultados muestran una presencia frecuente de dolor de intensidad media y alta en los donantes después de la cirugía; la salud mental está moderadamente comprometida y relacionada con síntomas de ansiedad y depresión. De interés, la CV mejoró después de la intervención, lo que sugiere una fase de adaptación tras la donación de riñón.

Conclusión: Esta revisión resalta los efectos positivos de la donación de riñón en los donantes vivos y la necesidad de mejorar el manejo del dolor y el apoyo a la salud mental en el primer período posterior a la cirugía. También aboga por la continuación de la investigación interdisciplinaria para desarrollar estrategias de cuidado basadas en evidencia que promuevan el bienestar multifacético de los donantes.

Palabras clave: Dolor; Calidad de vida; Donante; Riñón; Enfermedad Renal Crónica; Revisión Exploratoria

Abstract:

Background: Chronic Kidney Disease (CKD) is a progressive condition characterized by structural and functional impairments in the kidneys, affecting around 10-15% of the global population. Kidney transplantation from living donors is regarded as the most effective treatment for CKD. Little is known about the consequences in kidney donors in term of quality of life, work ability and overall health status, including pain syndromes developing. This may drive intervention to support donors and promoting their engagement.

Aims: This scoping review evaluates the quality of life (QoL), pain syndromes occurrence, mental health and work ability of adult living kidney donors.

Methods: A scoping review was performed using the PubMed/Medline, Embase, CINAHL, and Cochrane Library databases between April and September 2023. The review followed the Arksey and O'Malley framework, incorporated guidance from the Joanna Briggs Institute (JBI), and reported to PRISMA-ScR guidelines. The protocol for this review was registered on the Open Science Framework. Risk of bias and study quality were assessed using JBI checklists. *Results:* Starting from the analysis of 5069 records, 10 studies were included in the present study. The

results show scanty data about the issues. The occurrence of medium and high intensity pain after surgery is reported; mental health seems to be moderately compromised and related to symptoms of anxiety and depression. Of interest, QoL seems to be overall improved after the kidney donation, suggesting a phase of adaptation following the surgery. No data are available on the work ability changes after donation

Conclusion: This review emphasizes the presence of positive effects of kidney donation in living donors and, on the other hand the need of improving pain management and mental health support in the first time after surgery. The information about the consequences of kidney donation on work ability is completely lacking. This could be relevant to be known for new potential donors. It also advocates for continued interdisciplinary research for developing evidence-based care strategies to promote donors' multifaceted well-being.

Keywords Kidney transplantation, kidney donors; Chronic Kidney Disease; Pain: Quality of life; Work-ability

Introduction

Chronic Kidney Disease (CKD) is a significant global health issue, characterized by a glomerular filtration rate (GFR) below 60 ml/min and/or evidence of kidney damage, such as albuminuria, persisting for at least three months. This condition impacts approximately 15% of the global population [1-4], with higher prevalence observed among women, older adults, and those with diabetes or hypertension [5, 6]. The burden of CKD has risen substantially, with mortality rates increasing by 41.5% between 1990 and 2017 [7], and it is anticipated to become the fifth leading cause of death by 2040 [8]. The economic impact of CKD is also significant: in Europe, it accounts for approximately 1.3% of total healthcare expenditure [9-11], and costs may exceed \$10,000 per patient by the fifth year after diagnosis [12].

End-stage renal disease (ESRD), the final stage of CKD, requires renal replacement therapy (RRT) such as haemodialysis or peritoneal dialysis. Although life-sustaining, these treatments are associated with complications and significant impacts on quality of life [13–19]. For this reason, kidney transplantation, especially from living donors, is considered the best available treatment option [20-26]. Emerging research also highlights the interplay between autonomic function, pain perception, and psychological well-being, suggesting that dysregulations in sympathetic activity may negatively influence quality of life in populations experiencing chronic stress or pain, such as fibromyalgia patients [37, 38]. Previous studies have suggested a potential increased risk of hypertension and renal dysfunction after kidney donation, which may affect long-term well-being [39-40].

Despite improvements in transplant practices, the number of living kidney donors (LKDs) remains relatively low [27-29]. Yet, recent evidence suggests that living kidney donation may not be free from long-term consequences for donors themselves. While often perceived as a safe procedure, donation can impact physical and psychological well-being, leading to challenges such as post-operative pain, reduced work capacity, and symptoms of anxiety or depression [30–36]. The information about the potential consequences in term of overall physical, mental health and work ability may increase the awareness of the donors.

Study objectives

This scoping review aimed to explore the pain, quality of life, work ability and mental health of LKDs, with a focus on psychological aspects such as anxiety and depression.

Methods

Study Design

This scoping review followed a protocol that was registered in advance on the Open Science Framework on December 4, 2023 (doi: xxx). The review methodology was based on the framework outlined by the Joanna Briggs Institute (JBI) [39]. The study was reported according to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines [40, 41]

Formulation of research question

The PCC framework was used to formulate the research question. The Population (P) considered adult living kidney donors, the Concept (C) focused on kidney donation and associated outcomes such as pain, quality of life, work ability mental health, anxiety, and depression, while the Context (C) included both community and hospital settings.

Eligibility criteria

The inclusion criteria were refined after a preliminary search of databases such as PubMed/Medline and Google Scholar. This scoping review included quantitative and primary studies that were available in full text. For inclusion, articles had to address the variables under investigation, namely pain, quality of life, or mental health of LKDs. Additional criteria encompassed studies conducted in both community and hospital settings

and studies written in either Italian or English. Data extracted from the selected articles were analyzed based on the study objectives, sample characteristics, geographical context, and healthcare environment. There were no restrictions on the publication time frame. Studies that did not meet these criteria, as well as records such as books, editorials, conference papers, posters, secondary studies (reviews, meta-analyses), guidelines, studies on surgical techniques, pharmacological interventions, or economic aspects, were excluded. Only studies published in English or Italian were included due to the linguistic competence of the review team and the aim of ensuring accurate interpretation of results.

Search strategy

A comprehensive literature search was conducted across four databases: PubMed/Medline, Embase, CINAHL, and the Cochrane Library, to identify relevant studies. The selected records were then imported into EndNote 20 software (accessible at <https://endnote.com/>), where duplicates were manually removed to ensure an accurate reference list for subsequent analysis [42]. Search strings were developed using MeSH terms and relevant keywords, tailored for each database. The terms 'donor,' 'living,' 'kidney,' 'quality of life' and 'work ability' were selected based on the study's eligibility criteria. Google Scholar was consulted for grey literature to broaden the review. In line with the methodology adopted [38,40], reference lists and citations of full-text articles were screened for additional studies. Detailed search strings are provided in Supplementary File 1, ensuring transparency and reproducibility

Selection of evidence source

Two researchers (xx and xx) independently conducted the two-stage screening process, with conflicts resolved by a third author (MS), who was not involved in screening. In the first stage, titles and abstracts were reviewed, and studies involving non-CKD patients or those with incompatible designs were excluded. Articles with unclear population, intervention, or outcomes were also removed. This step efficiently filtered irrelevant studies, avoiding unnecessary full-text reviews. In the second stage, full texts of eligible records were retrieved using EndNote, internet searches, and journal access. The references and citations were reviewed to identify any additional relevant studies. During the final full-text screening, predefined inclusion and exclusion criteria were applied, leading to the exclusion of incorrect publication types and studies that did not address the pertinent variables.

Evaluation of risk of bias and methodological quality of studies

The potential bias and methodological rigor of the selected studies were independently evaluated by two researchers (xx and xx) using the JBI critical appraisal checklists. In instances where discrepancies arose, a neutral third reviewer (xx) provided resolution.

Studies were categorized based on quality, following criteria from a prior study [43], where those scoring above 70% on the JBI scale were considered high quality, scores between 50% and 70% were deemed medium quality, and those scoring below 50% were classified as low quality (Supplementary File 1).

Data extraction and synthesis

The process was conducted by two researchers (xx and xx) to ensure a robust and unbiased approach. The results were reported in a table, extracting the following data: author, publication year, country, study design, sample size, aim, measurements used, main results, limits, and quality of study. The data were synthesized narratively, detailed in the text, and complemented by visual figures for clarity and integration.

Results

Through searches in bibliographic databases, a total of 5068 articles were identified: 67 from Cochrane Library, 2242 from PubMed-Medline, 587 from CINAHL, 2172 from Embase, and one from other sources (Google Scholar). During the selection process, 2082 duplicates were eliminated. Following the analysis of article titles, 2987 were retained, which were then evaluated by reading the titles and abstracts. Of these, 2934 were deemed irrelevant, while the remaining 53 underwent a comprehensive evaluation. However, 43 of these were excluded as they did not meet the inclusion criteria for the research. At the end, 10 studies were included in the screening process. The screening process is detailed in the Prisma-ScR Flow-Diagram, (Figure 1).

Figure 1. Prisma-ScR Flow-Diagram

(Please insert Figure 1)

The included studies were conducted in European countries, like the United Kingdom [44], the Netherlands [45,46], and Germany [47], in Brazil [48], in Eastern countries, like Saudi Arabia [49], China [50], India [51] and Taiwan [52], and in Australia [53]. The articles presented different study

designs, specifically: eight cross-sectional studies [45,46,48-53], and two retrospective studies [44,47].

The total sample of patients across the studies was 1554, ranging from a minimum of 14 to a maximum of 512 living kidney donors per study (mean 129.5; SD 145.77). Concerning the risk of bias, the majority of included studies demonstrated high methodological quality [45,46,48-51] and four showed medium methodological quality [44,47,52,53]. None of the included studies were classified as low methodological quality (Table 1).

Table 1. Characteristics of included studies

Author, Year, (Country)	Study Design	Sample (n)	Study Aim	Instrument	Results	Limitation	Quality/ Bias
Bruijntjes et al., 2019^[45] (Netherlands)	Cross-sectional study	LKD ^s (n=512)	Post-donation pain	MPQ VAS PRI-T	↓ Pain	The incidence of pain was not evaluable; patients with a short follow-up might attribute pain issues to the nephrectomy	+++ / Low
Owen et al., 2010^[44] (UK)	Retrospective Observational study	LKD ^s (n=123)	Post-donation pain	S-LANSS BPI	↓ Pain	Response rate of 66%	++ / Medium
Alhussain et al., 2019^[49] (Saudi Arabia)	Cross-sectional study	LKD ^s (n=60)	Post-donation QoL	KDQOL-SF	↑ QoL	Small sample size; single centre	+++ / Low
Chien et al., 2010^[52] (Taiwan)	Cross-sectional study	LKD ^s (n=14)	Pre- and post-donation QoL	SF-36	↑ Pre-donation QoL ↓ Three months post-donation QoL	NR	++ / Medium
de Groot et al., 2012^[46] (Netherlands)	Cross-sectional study	LKD ^s (n=316)	Post-donation QoL and Mental health	SF-36 MCS	↑ QoL ↓ Mental health	The quality of life was not assessed before the donation	+++ / Low
Garcia et al., 2013^[48] (Brazil)	Cross-sectional study	LKD ^s (n=50)	Pre- and post-donation QoL	SF-36	↑ Pre-donation QoL ↓ Three months post-donation QoL ↑ One-year post-donation QoL	Single centre	+++ / Low
Guleria et al., 2011^[51] (India)	Cross-sectional study	LKD ^s (n=100)	Pre- and post-donation QoL and Mental health	WHO-QOL BREF HADS	↑ Pre-donation QoL ↑ Six months post-donation QoL ↑ Pre-donation Mental health ↑ Six months post-donation Mental health	NR	+++ / Low
Hoda et al., 2010^[47] (Germany)	Retrospective Observational study	LKD ^s (n=48)	Post-donation QoL	WHOQOL-BREF SF-36	↑ Post-donation QoL	Small sample size	++ / Medium
Shi et al., 2023^[50] (China)	Cross-sectional study	LKD ^s (n=122)	Post-donation QoL and Mental health	WHOQOL-BREF	↓ QoL ↓ Mental health	NR	+++ / Low
Smith et al., 2004^[53] (Australia)	Cross-sectional study	LKD ^s (n=48)	Post-donation mental health	SF-36	↑ Pre-donation mental health ↓ Post-donation mental health	NR	++ / Medium

Legend: LKD: Living Kidney Donors; KDQOL-SF: Kidney Disease Quality of Life Instrument; MPQ: McGill Pain Questionnaire; BPI: Brief Pain Inventory; S-LANSS: Leeds Assessment of Neuropathic Symptoms and Signs; VAS: Visual Analog Scale; PRI-T: Pain Rating Index; SF-36: Short Form Health Survey; WHOQOL-BREF: World Health Organization Quality of Life brief version; MCS: Mental Component Summary; HADS: Hospital Anxiety and Depression Scale; NR: Not Reported. Quality/Risk of Bias according to JBI Critical Appraisal Tools

Pain

Two studies [44, 45], delve into the prevalence and characteristics of post-donation pain among LKDs, employing various questionnaires such as the McGill Pain Questionnaire (MPQ), Brief Pain Inventory (BPI), Leeds Assessment of Neuropathic Symptoms and Signs (S-LANSS), the Visual Analog Scale (VAS) and the Pain Rating Index (PRI-T) to assess pain levels and characteristics. Bruintjes et al. [45] focused on 512 LKDs, finding that 5.7% (29 patients) reported chronic pain following laparoscopic nephrectomy. A notable 12.2% prevalence of chronic pain was observed in patients 3 to 24 months' post-surgery. Among these, 55.2% experienced mild pain and 34.5% severe pain. The pain was mostly continuous for 48.3% of the patients and intermittent for 37.9%, with common locations being the flank (25.0%), groin (18.2%), and supra-pubic area (15.9%). Pain severity was quantitatively assessed using the Visual Analogue Scale-VAS (Range 0-100) with an average score of 20 (\pm 22), and the PRI-T (Range 0-63), averaging at 10.21 (\pm 9.06). Younger patients (age 35-39) reported higher pain intensity ($p = 0.01$) than older patients (age 60-65). Among them, 27.6% needed pain relief medications like paracetamol or non-steroidal anti-inflammatory drugs, while one patient reported using tramadol. Owen et al. [44], on the other hand, studied 123 LKDs over a decade post-nephrectomy, with 66% (81 respondents) participating. Among these, 33% experienced chronic pain (over 3 months duration), and 26% suffered from chronic, surgery-related pain. Severe and disabling pain (score of ≥ 7 out of 10 using the brief pain inventory) was reported by 48%, and neuropathic pain by 20%, based on the S-LANSS score (>12). Among those with chronic pain, a third required analgesia, which provided 41% relief on average; however, most relief was achieved through basic medications like ibuprofen, paracetamol, and codeine-based drugs.

Mental health

Four studies [46,50,51,53] investigated the mental health of LKDs using various assessment tools, including the World Health Organization Quality of Life brief version (WHOQOL-BREF), the Short Form Health Survey 36 (SF-36), the Hospital Anxiety and Depression Scale (HADS), and the Mental Component Summary (MCS). These studies primarily focused on measuring levels of

anxiety, depression, and the overall psychological state of LKDs. The cross-sectional study by Shi et al. [50], evaluated 122 LKDs with the WHOQOL-BREF questionnaire. They found that LKDs experienced psychological distress post-donation, characterized by anxiety in 43.4% and depression in 29.5% of them. Similarly, another study, [53] offered a comparative perspective, assessing the evolution of anxiety and depression symptoms in 48 LKDs through the SF-36 questionnaire. The 12-month prevalence of depressive and anxiety disorders following surgery was found to be 18%. Specifically, psychological disorders at the 12-month mark, assessed using the SF-36 questionnaire, were linked to the donor's psychosocial function (Mental Component Summary) ($P<0.01$), physical function (Physical Component Summary) at both 4 and 12 months ($P<0.01$), and the recipient's psychological condition at 12 months ($P<0.05$). De Groot et al. [46] reported that 18% of 316 donors surveyed experienced reduced mental function post-donation, as measured by the Mental Component Summary (MCS) of the Health-Related Quality of Life (HRQoL) scale. In contrast, Guleria et al [51] who studied 100 LKD women, showed an overall improvement in post-donation psychological status assessed by the World Health Organization Quality of Life Questionnaire (WHO QoL Bref) and the Hospital Anxiety and Depression Scale (HADS) compared to the pre-donation condition ($p = 0.000$). Specifically, all donors experienced an improvement in the psychological domain of the questionnaire ($p<0.0001$) and, in particular, mother donors demonstrated a significant decrease in depression score ($p < 0.0001$). The study did not demonstrate a significant change in anxiety scores ($p = 0.065$) after kidney donation. Due to the international nature of the included studies, results may not be directly applicable to the Italian healthcare context or to other specific national populations.

Quality of Life

Seven studies [46-52] provide a broad assessment of QoL among LKDs, by using different tools including the WHOQOL-BREF, the SF-36, and Kidney Disease Quality of Life Instrument (KDQOL-SF). Some studies evaluated QoL both before and after kidney donation [48,51,52], while others focused exclusively on the phase after the donation [46,47,49,50].

Chien et al. [52] conducted a study involving 14 LKDs, to investigate changes in their QoL through the SF-36 questionnaire before and three months after laparoscopic nephrectomy. They found a decline in physical function, role limitations and general health perceptions reduction after donation compared to baseline (SF-36 score 80.4 ± 16.6 vs 92.9 ± 5.0 ; $p = 0.004$). A similar result was observed in the longitudinal prospective study by Garcia et al. [48], which evaluated the quality of

life (QoL) of 50 living kidney donors (LKDs) before donation, as well as three months and one year after donation. The study found consistent QoL scores one-year post-donation (physical health = 60.40 ± 3.1) compared to pre-donation levels (physical health = 59.67 ± 4.4). After one year, 72% of donors reported an improvement in their health, while 22% stated their health remained unchanged. Additionally, three studies [46, 47, 50] examined the QoL and physical health of kidney donors, comparing their results to those of the general population. De Groot et al. [46] assessed the health-related quality of life (HRQoL) in 316 donors who donated between 1997 and 2009, finding that, on average, donors exhibited a higher HRQoL than the general population. However, 12% of donors reported lower physical HRQoL (Physical Component Summary, PCS), which was associated with a higher body mass index (BMI) and pre-donation smoking habits. These individuals also experienced increased fatigue and reduced social participation. Similarly, another study [47] found that donor QoL scores were consistently higher than those of the general population, regardless of the time elapsed since donation. In this study, 91% of donors rated their health as good, very good, or excellent, with only 6% describing it as fair and 3% as poor. Additionally, 91% reported experiencing mild or no pain around the surgical scar, and 94% indicated they would donate again if given the opportunity. In contrast, the study by Shi et al. [50] found that donors' physical QoL was lower than that of the general population. It was observed that the recipient's poor health negatively impacted all domains of the donors' QoL, including the physical dimension. A graphical summary of the results is shown in Figure 2. The heterogeneity of the instruments used and the sociodemographic variability among donors limit the comparability of results and preclude definitive conclusions or generalizability to specific populations. Although work ability represents a key component of post-donation recovery and long-term donor well-being, no studies included in this scoping review have examined this outcome. The absence of data in this domain is particularly concerning, given that the ability to resume occupational activities constitutes a crucial element of psychosocial reintegration and may significantly affect donors' physical health, mental well-being, and socioeconomic stability. This notable gap underscores the importance of future investigations aimed at systematically assessing the impact of living kidney donation on occupational functioning and vocational trajectories.

Figure 2. Synthesis of Outcomes in Living Kidney Donors: Pain, Quality of Life, Mental Health, and Gaps in Work Ability Evidence

(Please insert Figure 2)

Legend. Summary of the results of the scoping review

Discussion

In this review pain, mental health outcomes, and overall quality of life among LKDs has been investigated.

As reported in Figure 1, few studies addressed the above effects of kidney donation in LKDs even though these issues are crucial for promoting this fundamental therapeutic strategy in patients suffering with CKD [16,23,28].

Similarly to what observed in other living donors such as liver [54, 55], lobar lung [56], and marrow or peripheral blood stem cells donors [57, 58], LKDs experienced chronic pain [44,45].

The prevalence and intensity of chronic pain among LKDs after surgery should be more adequately addressed in clinical setting by developing new pain management strategies tailored to this population [59] as already suggested for other living donors [60, 61]. Addressing chronic pain in living donors is crucial to prevent or reduce the potential drop of physical, psychological well-being [45] and workability after surgery that is strictly related with the pain intensity [62]. In addition, the pain treatment programs after donation should be a part of the LKDs training donors performed by the healthcare providers also aimed at promoting future donations [63].

The results of the studies that addressed mental health outcomes in living kidney donors (LKDs) are contrasting. While three studies [46, 50, 53] reported anxiety and depression among LKDs, Guleria et al. [51] found an improvement in psychological well-being post-donation, a difference that may be attributed to the specific sample in the latter study, which primarily consisted of kidney donor mothers. These findings are consistent with a previous study that demonstrated how donors who are emotionally or biologically connected to the recipients tend to show improvements across various domains, including psychological well-being [64].

Notably, a complex psychological response to organ donation, likely influenced by individual factors such as religious affiliation, pre-existing mental health conditions, social support systems, and personal motivations for donation [65] may also contributed to different results. Further research are necessary to fill the gap and to clarify the mental health trajectories of LKDs and identify predictors of positive and negative psychological outcomes that may help the more accurate selection of LKDs.

The impact of kidney donation on overall QoL is also complex to be addressed and interpreted by the available studies, even because Mental Health is a part of QoL. While some studies report a

short-term decline in general QoL [48, 50, 52], others indicate QoL stability or improvement over time [46, 47, 49, 51]. These observations may reflect an adaptive process of the donors. Indeed, it seems that the initial challenges are gradually overcome, resulting in QoL synthetic scores similar or higher than those reported by the general population [29,33]. The presence of similar patterns among liver donors [66-68] supports the notion of a common adaptive response among living donors that should be confirmed by larger prospective studies and emphasized during donor's training. Indeed, the scanty data available by now suggest that kidney donation may initially affect QoL. However, a percentage of donors successfully adapt and may derive personal fulfillment from their supporting behaviors [69].

These findings emphasize the necessity for comprehensive pre-donation education and post-donation care, ensuring donors are aware of potential chronic pain, mental health challenges, and QoL impacts. Enhanced support measures, including effective pain management [70] and mental health support [71], are vital for donor well-being. Future research should focus on long-term outcomes and explore non-pharmacological strategies, such as virtual reality and meditation, to improve LKDs support and care, similar to interventions already used in oncology to enhance patient well-being during procedures [72, 73]. Finally, no data are available on the effects of kidney donation in working performance that may represent a reason of concern.

The current literature on the psychosocial outcomes of living kidney donors including impact on working capability remains limited in both scope and depth. This notable scarcity of comprehensive and longitudinal studies highlights a pressing need for further research to better understand and support the complex experiences of these individuals.

Study Limitations

The main limitation of this review lies in the predominantly observational nature of the included studies, which restricts the ability to establish clear causal relationships between the variables analyzed. Additionally, the studies showed significant variation in methodological quality. These constraints may weaken the reliability of the review's conclusions, underscoring the need for future research, preferably using well-designed randomized controlled trials (RCTs), to confirm the findings. Moreover, differences in outcome measurement tools across studies and linguistic limitations in study selection may further restrict generalizability. The predominance of non-Italian contexts also raises questions about applicability to national populations.

Conclusions

This review underscores the complexities of the LKDs experience, highlighting the essential roles of effective pain management and mental health support in optimizing outcomes for donors.

Moreover, additional relevant issues such as the impact on working performance after donation remain absolutely unknown. The evidence suggests a need for ongoing research and innovation in donor care practices, with a focus on interdisciplinary approaches that encompass the physical, psychological, and social dimensions of donor well-being. Future studies should aim to further elucidate the factors influencing LKDs outcomes, with an emphasis on developing evidence-based interventions that can be integrated into donor care protocols globally.

Scoping Review Protocol Registration

This scoping review followed a protocol registered prospectively on Open Science Framework on December 4, 2023 (doi: 10.17605/OSF.IO/FPEQN).

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Funding

This study received no funding

Conflict of interest

The authors declare no conflict of interest

Author's contribution

GDC: Conceptualization, Methodology, Writing Original Draft, Review & Editing, Investigation, Visualization; **BM:** Conceptualization, Methodology, Writing Original Draft, Review & Editing, Investigation, Data Analysis, Visualization; Coordinator; **GC:** Methodology, Review & Editing; **MS:** Conceptualization, Methodology, Review & Editing; Coordinator; **SMP:** Review & Editing, Visualization; **FB:** Conceptualization, Methodology, Review & Editing, Visualization; **CC:** Conceptualization, Methodology, Review & Editing, Visualization; **FR:** Review & Editing, Visualization; **MC:** Review & Editing, Visualization; **DC:** Review & Editing, Visualization; **DL:** Review & Editing, Visualization; **GA:** Conceptualization, Methodology, Review & Editing, Visualization; Coordinator; **SM:** Conceptualization, Methodology, Writing Original Draft, Review & Editing, Visualization; Coordinator;

GDC and BM provided an equal contribution as first author in drafting the manuscript. GA and SM provided an equal contribution as last author in drafting the manuscript. All authors read and approved the final manuscript.

Supplementary Files: Search strategy; Quality and risk of Bias JBI Critical Appraisal Tools

References

1. Neuen BL, Chadban SJ, Demaio AR, Johnson DW, Perkovic V. Chronic kidney disease and the global NCDs agenda. *BMJ Glob Health*. 2017 Jul 6;2(2):e000380. doi: 10.1136/bmjjh-2017-000380.
2. Gai Z, Wang T, Visentin M, Kullak-Ublick GA, Fu X, Wang Z. Lipid Accumulation and Chronic Kidney Disease. *Nutrients*. 2019 Mar 28;11(4):722. doi: 10.3390/nu11040722.
3. Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease. *Lancet*. 2017 Mar 25;389(10075):1238-1252. doi: 10.1016/S0140-6736(16)32064-5.
4. Matsushita K, Ballew SH, Wang AY, Kalyesubula R, Schaeffner E, Agarwal R. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. *Nat Rev Nephrol*. 2022 Nov;18(11):696-707. doi: 10.1038/s41581-022-00616-6.
5. GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study. *Lancet*. 2024 May 18;403(10440):2100-2132. doi: 10.1016/S0140-6736(24)00367-2.
6. Bowe B, Xie Y, Li T, Mokdad AH, Xian H, Yan Y, et al. Changes in the US Burden of Chronic Kidney Disease From 2002 to 2016: An Analysis of the Global Burden of Disease Study. *JAMA Netw Open*. 2018 Nov 2;1(7):e184412. doi: 10.1001/jamanetworkopen.2018.4412.
7. Cockwell, P., & Fisher, L.-A. The global burden of chronic kidney disease. *The Lancet*, 2020, 395(10225), 662-664. [https://doi.org/10.1016/S0140-6736\(19\)32977-0](https://doi.org/10.1016/S0140-6736(19)32977-0)
8. Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. *Lancet*. 2018 Nov 10;392(10159):2052-2090. doi: 10.1016/S0140-6736(18)31694-5.
9. Kula AJ, Prince DK, Katz R, Bansal N. Mortality Burden and Life-Years Lost Across the Age Spectrum for Adults Living with CKD. *Kidney360*. 2023 May 1;4(5):615-621. doi: 10.34067/KID.0000000000000097.
10. Jha V, Al-Ghamdi SMG, Li G, Wu MS, Stafylas P, Retat L, et al. Global Economic Burden Associated with Chronic Kidney Disease: A Pragmatic Review of Medical Costs for the Inside CKD Research Programme. *Adv Ther*. 2023 Oct;40(10):4405-4420. doi: 10.1007/s12325-023-02608-9.
11. Birkeland KI, Bodegard J, Eriksson JW, Norhammar A, Haller H, Linssen GCM, et al. Heart failure and chronic kidney disease manifestation and mortality risk associations in type 2 diabetes: A large multinational cohort study. *Diabetes Obes Metab*. 2020 Sep;22(9):1607-1618. doi: 10.1111/dom.14074.
12. Sundström J, Bodegard J, Bollmann A, Vervloet MG, Mark PB, Karasik A, et al. Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2·4 million patients from 11 countries: The CaReMe CKD study. *Lancet Reg Health Eur*. 2022 Jun 30;20:100438. doi: 10.1016/j.lanepe.2022.100438.
13. Abbasi, M. A., Chertow, G. M., & Hall, Y. N. End-stage renal disease. *BMJ clinical evidence*, 2010, 2002.
14. Gusev, E., Solomatina, L., Zhuravleva, Y., & Sarapultsev, A. The Pathogenesis of End-Stage Renal Disease from the Standpoint of the Theory of General Pathological Processes of Inflammation.

International Journal of Molecular Sciences, 2021 22(21), 11453. <https://www.mdpi.com/1422-0067/22/21/11453>

15. Tang, S. C. W., & Lai, K. N. Peritoneal dialysis: the ideal bridge from conservative therapy to kidney transplant. *Journal of Nephrology*, 2020, 33(6), 1189-1194. <https://doi.org/10.1007/s40620-020-00787-0>
16. Kovvuru, K., & Velez, J. C. Q. Complications associated with continuous renal replacement therapy. *Seminars in Dialysis*, 2021, 34(6), 489-494. [https://doi.org/https://doi.org/10.1111/sdi.12970](https://doi.org/10.1111/sdi.12970)
17. Song, J. H. Complications of Hemodialysis. In Y.-L. Kim & H. Kawanishi (Eds.), *The Essentials of Clinical Dialysis 2018*, 105-126. Springer Singapore. https://doi.org/10.1007/978-981-10-1100-9_9
18. Andreoli, M. C. C., & Totoli, C. Peritoneal dialysis. *Revista da Associação Médica Brasileira*, 2020, 66, s37-s44. [https://doi.org/https://doi.org/10.1590/1806-9282.66.S1.37](https://doi.org/10.1590/1806-9282.66.S1.37)
19. Bello AK, Okpechi IG, Osman MA, Cho Y, Cullis B, Htay H, et al. Epidemiology of peritoneal dialysis outcomes. *Nat Rev Nephrol*. 2022 Dec;18(12):779-793. doi: 10.1038/s41581-022-00623-7.
20. Samiei Siboni F, Alimoradi Z, Atashi V, Alipour M, Khatooni M. Quality of Life in Different Chronic Diseases and Its Related Factors. *Int J Prev Med*. 2019 May 17;10:65. doi: 10.4103/ijpvm.IJPVM_429_17.
21. Ge, L., Ong, R., Yap, C. W., & Heng, B. H. Effects of chronic diseases on health-related quality of life and self-rated health among three adult age groups. *Nursing & health sciences*, 2019 21(2), 214-222. <https://doi.org/10.1111/nhs.12585>
22. Santagostino AM, Cannizzaro D, Soekeland F, Mancin S, Mazzoleni B. Pain and Quality of Life in Patients Undergoing Lumbar Arthrodesis for Degenerative Spondylolisthesis: A Systematic Review. *World Neurosurg*. 2023 Jun 20:S1878-8750(23)00816-1. doi: 10.1016/j.wneu.2023.06.047.
23. Zazzeroni L, Pasquinelli G, Nanni E, Cremonini V, Rubbi I. Comparison of Quality of Life in Patients Undergoing Hemodialysis and Peritoneal Dialysis: a Systematic Review and Meta-Analysis. *Kidney Blood Press Res*. 2017;42(4):717-727. doi: 10.1159/000484115.
24. Zhang, L., Guo, Y., & Ming, H. Effects of hemodialysis, peritoneal dialysis, and renal transplantation on the quality of life of patients with end-stage renal disease. *Rev Assoc Med Bras (1992)*, 2020; 66(9), 1229-1234. <https://doi.org/10.1590/1806-9282.66.9.1229>
25. Vanholder R, Stel VS, Jager KJ, Lameire N, Loud F, Oberbauer R. How to increase kidney transplant activity throughout Europe-an advocacy review by the European Kidney Health Alliance. *Nephrol Dial Transplant*. 2019 Aug 1;34(8):1254-1261. doi: 10.1093/ndt/gfy390. PMID: 30629203.
26. Reese, P. P., Caplan, A. L., Kesselheim, A. S., & Bloom, R. D. Creating a Medical, Ethical, and Legal Framework for Complex Living Kidney Donors. *Clinical Journal of the American Society of Nephrology*, 2006; 1(6), 1148-1153. <https://doi.org/10.2215/cjn.02180606>
27. Boenink R, Kramer A, Tuinhout RE, Savoye E, Åsberg A, Idrizi A, et al . Trends in kidney transplantation rate across Europe: study from the ERA Registry. *Nephrol Dial Transplant*. 2023 May 31;38(6):1528-1539. doi: 10.1093/ndt/gfac333.
28. Abecassis, M., Bartlett, S. T., Collins, A. J., et al. Kidney transplantation as primary therapy for end-stage renal disease: a National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) conference. *Clin J Am Soc Nephrol*, 2008; 3(2), 471-480. <https://doi.org/10.2215/cjn.05021107>

29. Nemati E, Einollahi B, Lesan Pezeshki M, Porfarziani V, Fattahi MR. Does kidney transplantation with deceased or living donor affect graft survival? *Nephrourol Mon.* 2014 Jul 5;6(4):e12182. doi: 10.5812/numonthly.12182.

30. Clemens KK, Thiessen-Philbrook H, Parikh CR, Yang RC, Karley ML, Boudville N, et al; Donor Nephrectomy Outcomes Research (DONOR) Network. Psychosocial health of living kidney donors: a systematic review. *Am J Transplant.* 2006 Dec;6(12):2965-77. doi: 10.1111/j.1600-6143.2006.01567.x.

31. Agerskov, H., Bistrup, C., Ludvigsen, M. S., & Pedersen, B. D. Experiences of living kidney donors during the donation process. *Journal of Renal Care*, 2018; 44(2), 96-105. <https://doi.org/https://doi.org/10.1111/jorc.12233>

32. Messersmith EE, Gross CR, Beil CA, Gillespie BW, Jacobs C, Taler SJ, et al. Satisfaction With Life Among Living Kidney Donors: A RELIVE Study of Long-Term Donor Outcomes. *Transplantation.* 2014 Dec 27;98(12):1294-300. doi: 10.1097/TP.0000000000000360.

33. Holscher, C. M., Leanza, J., Thomas, A. G. Anxiety, depression, and regret of donation in living kidney donors. *BMC Nephrology*, 2018; 19(1), 218. <https://doi.org/10.1186/s12882-018-1024-0>

34. Wirken L, van Middendorp H, Hooghof CW, Sanders JF, Dam RE, van der Pant KAMI, et al. Psychosocial consequences of living kidney donation: a prospective multicentre study on health-related quality of life, donor-recipient relationships and regret. *Nephrol Dial Transplant.* 2019 Jun 1;34(6):1045-1055. doi: 10.1093/ndt/gfy307.

35. Massey EK, Pronk MC, Zuidema WC, Weimar W, van de Wetering J, Ismail SY. Positive and negative aspects of mental health after unspecified living kidney donation: A cohort study. *Br J Health Psychol.* 2022 May;27(2):374-389. doi: 10.1111/bjhp.12549

36. Zamunér, A. R., Porta, A., Andrade, C. P., Forti, M., Marchi, A., Furlan, R., Barbic, F., Catai, A. M., & Silva, E. (2017). The degree of cardiac baroreflex involvement during active standing is associated with the quality of life in fibromyalgia patients. *PloS one*, 12(6), e0179500. <https://doi.org/10.1371/journal.pone.0179500>

37. Zamunér, A. R., Barbic, F., Dipaola, F., Bulgheroni, M., Diana, A., Atzeni, F., Marchi, A., Sarzi-Puttini, P., Porta, A., & Furlan, R. (2015). Relationship between sympathetic activity and pain intensity in fibromyalgia. *Clinical and experimental rheumatology*, 33(1 Suppl 88), S53–S57.

38. Lentine KL, Lam NN, Segev DL. Risks of Living Kidney Donation: Current State of Knowledge on Outcomes Important to Donors. *Clin J Am Soc Nephrol.* 2019 Apr 5;14(4):597-608. doi: 10.2215/CJN.11220918.

39. O'Keeffe LM, Ramond A, Oliver-Williams C, Willeit P, Paige E, Trotter P, et al. Mid- and Long-Term Health Risks in Living Kidney Donors: A Systematic Review and Meta-analysis. *Ann Intern Med.* 2018 Feb 20;168(4):276-284. doi: 10.7326/M17-1235.

40. Peters, M. D. J., Marnie, C., Tricco, A. C., et al. (2020). Updated methodological guidance for the conduct of scoping reviews. *JB1 Evid Synth*, 18(10), 2119-2126. <https://doi.org/10.11124/jbies-20-00167>

41. Anastasi, G., & Bambi, S. (2023). Utilization and effects of security technologies in mental health: A scoping review. *International Journal of Mental Health Nursing*, 32(6), 1561–1582. <https://doi.org/10.1111/inm.13193>

42. Tricco, A. C., Lillie, E., Zarin, W., et al. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. *Ann Intern Med*, 169(7), 467-473. <https://doi.org/10.7326/m18-0850>

43. Sguanci M, Mancin S, Piredda M, De Marinis MG. Protocol for conducting a systematic review on diagnostic accuracy in clinical research. *MethodsX*. 2024 Jan 20;12:102569. doi: 10.1016/j.mex.2024.102569.

44. Sguanci M, Ferrara G, Palomares SM, Parozzi M, Godino L, Gazineo D, et al. Dysgeusia and Chronic Kidney Disease: A Scoping Review. *J Ren Nutr*. 2024 Sep;34(5):374-390. doi: 10.1053/j.jrn.2024.04.005.

45. Owen M, Lorgelly P, Serpell M. Chronic pain following donor nephrectomy--a study of the incidence, nature and impact of chronic post-nephrectomy pain. *Eur J Pain*. 2010 Aug;14(7):732-4. doi: 10.1016/j.ejpain.2009.11.013.

46. Bruintjes MHD, van Helden EV, de Vries M, Wirken L, Evers AWM, van Middendorp H, et al. Chronic pain following laparoscopic living-donor nephrectomy: Prevalence and impact on quality of life. *Am J Transplant*. 2019 Oct;19(10):2825-2832. doi: 10.1111/ajt.15350.

47. de Groot IB, Stiggelbout AM, van der Boog PJ, Baranski AG, Marang-van de Mheen PJ; PARTNER-study group. Reduced quality of life in living kidney donors: association with fatigue, societal participation and pre-donation variables. *Transpl Int*. 2012 Sep;25(9):967-75. doi: 10.1111/j.1432-2277.2012.01524.x.

48. Hoda, M. R., Hamza, A., Wagner, S., Greco F., Fornara P. Impact of hand-assisted laparoscopic living donor nephrectomy on donor's quality of life, emotional, and social state. *Transplant Proc*, 2010; 42(5), 1487-1491. <https://doi.org/10.1016/j.transproceed.2010.01.078>

49. Garcia, M. F., Andrade, L. G., & Carvalho, M. F. Living kidney donors--a prospective study of quality of life before and after kidney donation. *Clin Transplant*, 2013; 27(1), 9-14. <https://doi.org/10.1111/j.1399-0012.2012.01687.x>

50. Alhussain BM, Alqubaisi AK, Omair A, O'hali WA, Abdullah KO, Altamimi AR. Quality of life in living kidney donors: A single-center experience at the king abdulaziz medical city. *Saudi J Kidney Dis Transpl*. 2019 Nov-Dec;30(6):1210-1214. doi: 10.4103/1319-2442.275464.

51. Shi, Y., Zhang, H., Nie, Z., & Fu, Y. Quality of life, anxiety and depression symptoms in living related kidney donors: a cross-sectional study. *Int Urol Nephrol*, 2023; 55(9), 2335-2343. <https://doi.org/10.1007/s11255-023-03542-z>

52. Guleria S, Reddy VS, Bora GS, Sagar R, Bhowmik D, Mahajan S. The quality of life of women volunteering as live-related kidney donors in India. *Natl Med J India*. 2011 Nov-Dec;24(6):342-4.

53. Chien CH, Wang HH, Chiang YJ, Chu SH, Liu HE, Liu KL. Quality of life after laparoscopic donor nephrectomy. *Transplant Proc*. 2010 Apr;42(3):696-8. doi: 10.1016/j.transproceed.2010.03.001.

54. Smith, G. C., Trauer, T., Kerr, P. G., & Chadban, S. J. Prospective psychosocial monitoring of living kidney donors using the Short Form-36 health survey: results at 12 months. *Transplantation*, 2004; 78(9), 1384-1389. <https://doi.org/10.1097/01.tp.0000140967.34029.f1>

55. Holtzman S, Clarke HA, McCluskey SA, Turcotte K, Grant D, Katz J. Acute and chronic postsurgical pain after living liver donation: Incidence and predictors. *Liver Transpl*. 2014 Nov;20(11):1336-46. doi: 10.1002/lt.23949.

56. Butt Z, DiMartini AF, Liu Q, Simpson MA, Smith AR, Zee J, et al. Fatigue, Pain, and Other Physical Symptoms of Living Liver Donors in the Adult-to-Adult Living Donor Liver Transplantation Cohort Study. *Liver Transplant*. 2018 Sep;24(9):1221-1232. doi: 10.1002/lt.25185.

57. Fujii, K., Tanaka, S., Ishihara, M., et al. (2023). Donor's long-term quality of life following living-donor lobar lung transplantation. *Clinical transplantation*, 37(4), e14927. <https://doi.org/10.1111/ctr.14927>

58. Chang, G., McGarigle, C., Koby, D., & Antin, J. H. Symptoms of pain and depression in related marrow donors: changes after transplant. *Psychosomatics*, 2003; 44(1), 59–64. <https://doi.org/10.1176/appi.psy.44.1.59>

59. Miller JP, Perry EH, Price TH, Bolan CD Jr, Karanes C, Boyd TM et al. Recovery and safety profiles of marrow and PBSC donors: experience of the National Marrow Donor Program. *Biol Blood Marrow Transplant*. 2008 Sep;14(9 Suppl):29-36. doi: 10.1016/j.bbmt.2008.05.018.

60. Dreesmann, N. J., Jung, W., Shebaili, M., & Thompson, H. J. Kidney Donor Perspectives on Acute Postoperative Pain Management. *Clinical nursing research*, 2023;32(8), 1124–1133. <https://doi.org/10.1177/10547738231156151>

61. Dewe G, Steyaert A, De Kock M, Lois F, Reding R, Forget P. Pain management in living related adult donor hepatectomy: feasibility of an evidence-based protocol in 100 consecutive donors. *BMC Res Notes*. 2018 Nov 26;11(1):834. doi: 10.1186/s13104-018-3941-1.

62. Hogan, B. J., Pai, S. L., Planinsic, R., Suh, K. S., Hillingsø, J. G., Ghani, S. A., et al. Does multimodal perioperative pain management enhance immediate and short-term outcomes after living donor partial hepatectomy? A systematic review of the literature and expert panel recommendations. *Clinical transplantation*, 2022; 36(10), e14649. <https://doi.org/10.1111/ctr.14649>

63. Adams MA, Andacoglu O, Crouch CE, de Santibañes M, Jackson WE, Jalal A, et al. Does pre-operative counselling of the donor improve immediate and short-term outcomes after living liver donation? - A review of the literature and expert panel recommendations. *Clin Transplant*. 2022 Oct;36(10):e14636. doi: 10.1111/ctr.14636.

64. Kranenburg LW, Zuidema WC, Weimar W, Hilhorst MT, Ijzermans JN, Passchier J, et al. Psychological barriers for living kidney donation: how to inform the potential donors? *Transplantation*. 2007 Oct 27;84(8):965-71. doi: 10.1097/01.tp.0000284981.83557.dc.

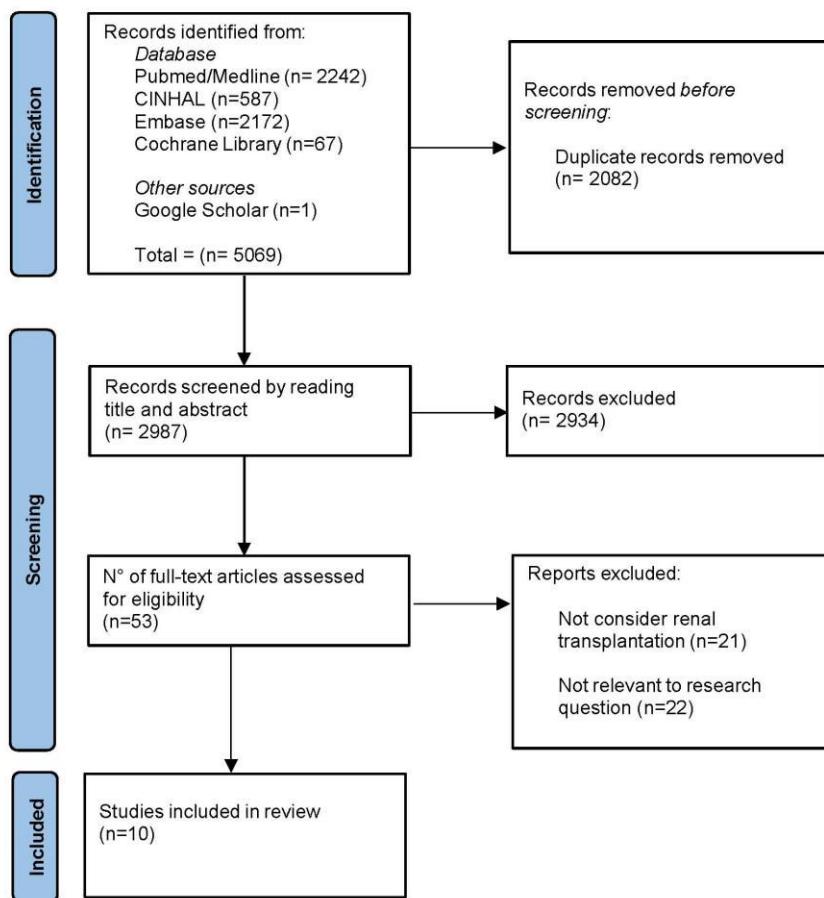
65. Dew MA, Butt Z, Liu Q, Simpson MA, Zee J, Ladner DP, et al. Prevalence and Predictors of Patient-Reported Long-term Mental and Physical Health After Donation in the Adult-to-Adult Living-Donor Liver Transplantation Cohort Study. *Transplantation*. 2018 Jan;102(1):105-118. doi: 10.1097/TP.0000000000001942.

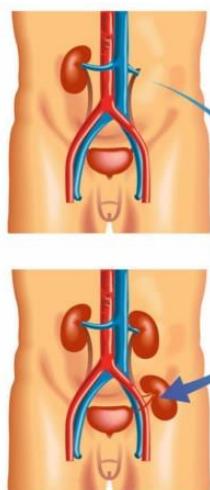
66. Van Pilsum Rasmussen SE, Robin M, Saha A, Eno A, Lifshitz R, Waldram MM, et al. The Tangible Benefits of Living Donation: Results of a Qualitative Study of Living Kidney Donors. *Transplant Direct*. 2020 Nov 10;6(12):e626. doi: 10.1097/TXD.0000000000001068.

67. Parikh, N. D., Ladner, D., Abecassis, M., & Butt, Z. Quality of life for donors after living donor liver transplantation: a review of the literature. *Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society*, 2010; 16(12), 1352–1358. <https://doi.org/10.1002/lt.22181>

68. Jin SG, Xiang B, Yan LN, Chen ZY, Yang JY, Xu MQ, et al. Quality of life and psychological outcome of donors after living donor liver transplantation. *World J Gastroenterol*. 2012 Jan 14;18(2):182-7. doi: 10.3748/wjg.v18.i2.182.

69. Pascher A, Sauer IM, Walter M, Lopez-Haeninnen E, Theruvath T, Spinelli A, et al. Donor evaluation, donor risks, donor outcome, and donor quality of life in adult-to-adult living donor liver transplantation. *Liver Transpl*. 2002 Sep;8(9):829-37. doi: 10.1053/jlts.2002.34896.


70. Agerskov, H., Ludvigsen, M. S., Bistrup, C., & Pedersen, B. D. From donation to everyday life: Living kidney donors' experiences three months after donation. *Journal of renal care*, 2016; 42(1), 43–52. <https://doi.org/10.1111/jorc.12137>


71. Mathuram Thiyagarajan, U., Bagul, A., & Nicholson, M. L. Pain management in laparoscopic donor nephrectomy: a review. *Pain research and treatment*, 2012, 201852. <https://doi.org/10.1155/2012/201852>

72. Clifton E, Winder GS, Lentine KL, Zimbresan PC, Yadav A, Rubman S, et al. Psychosocial Evaluation of Living Kidney Donors: A Survey of Current Practices in the United States. *Transplantation*. 2024 Nov 1;108(11):e382-e389. doi: 10.1097/TP.0000000000005095.

73. Chayadi, E., Baes, N., & Kiropoulos, L. The effects of mindfulness-based interventions on symptoms of depression, anxiety, and cancer-related fatigue in oncology patients: A systematic review and meta-analysis. *PloS one*, 2022; 17(7), e0269519. <https://doi.org/10.1371/journal.pone.0269519>

74. Mitello L, Marti F, Mauro L, Siano L, Pucci A, Tarantino C, et al. The Usefulness of Virtual Reality in Symptom Management during Chemotherapy in Lung Cancer Patients: A Quasi-Experimental Study. *J Clin Med*. 2024 Jul 26;13(15):4374. doi: 10.3390/jcm13154374.

Kidney Transplant

Implications
for
kidney donors

MENTAL HEALTH

- Chronic pain (lasting more than 3 months) after laparoscopic nephrectomy
- Continuous or intermittent pain
- Young patients (age 35-39) greater pain intensity
- Severe and disabling pain in some cases

QUALITY OF LIFE

- Psychological distress after donation (anxiety and depression)
- Psychological disturbances at 12 months associated with donor psychosocial function, physical function and psychological disturbance of the recipient, mild decline in psychosocial function
- General improvement in psychological status post-donation in rare cases
- Decline in physical function in some cases: role limitations and reduced general health perception after donation
- Improved long-term health status; higher QoL one year after donation (recovery or adaptation phase)
- Reduced physical health-related QoL associated with lower body mass index (BMI): increased fatigue and lower social participation.