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ABSTRACT

Spent dialysate, a byproduct of hemodialysis, is traditionally discarded but holds significant potential for
resource recovery within a circular economy framework. This literature review synthesizes research on the
composition, ecotoxicological risks, treatment technologies, and resource recovery opportunities of spent
dialysate. Characterized by high salinity, nitrogenous compounds, and contaminants like antibiotic resistance
genes (ARGs), per- and polyfluoroalkyl substances (PFAS), and microplastics, spent dialysate poses moderate
environmental risks, including eutrophication and antimicrobial resistance dissemination. Advanced
treatment methods, such as reverse osmosis (RO) and nanofiltration (NF), effectively remove contaminants,
while struvite crystallization and energy recovery via heat exchangers and microbial fuel cells (MFCs) enable
the valorization of water, nutrients, and energy. These approaches reduce carbon emissions by 30-50% and
offer economic benefits through cost savings and revenue generation. However, regulatory gaps, high
infrastructure costs, and limited research on microplastics highlight the need for further investigation to fully
realize the circular potential of spent dialysate. This review synthesizes these challenges, identifies key
implementation barriers, and outlines critical research priorities to translate this promising concept into
sustainable practice.

RESUMEN

Dializado gastado, un subproducto de la hemodidlisis, tradicionalmente se descarta, pero tiene un gran
potencial para la recuperacion de recursos dentro de un marco de economia circular. Esta revision
bibliografica sintetiza investigaciones sobre la composicion, los riesgos ecotoxicologicos, las tecnologias de
tratamiento y las oportunidades de recuperacion de recursos del dializado gastado. Caracterizado por su alta
salinidad, compuestos nitrogenados y contaminantes como genes de resistencia a antibioticos (ARG),
sustancias perfluoroalquiladas y polifluoroalquiladas (PFAS) y microplasticos, el dializado gastado
representa riesgos ambientales moderados, como eutrofizacion y diseminacion de resistencia antimicrobiana.
Métodos avanzados de tratamiento, como la 6smosis inversa (RO) y la nanofiltracién, eliminan eficazmente
los contaminantes, mientras que la cristalizacion de estruvita y la recuperaciéon de energia mediante
intercambiadores de calor y celdas de combustible microbianas (MFC) permiten valorizar agua, nutrientes y
energia. Estos enfoques reducen las emisiones de carbono entre un 30-50%, y ofrecen beneficios econémicos
mediante ahorros de costos y generacion de ingresos. Sin embargo, las brechas regulatorias, los altos costos de
infraestructura y la investigacién limitada sobre microplasticos resaltan la necesidad de més estudios para
aprovechar plenamente el potencial circular del dializado gastado. Esta revision sintetiza estos desafios,
identifica las barreras clave para la implementacién y esboza prioridades de investigacion criticas para
trasladar este concepto prometedor a la practica sostenible.
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Introduction

Hemodialysis, a critical treatment for end-stage renal disease,
generates substantial volumes of spent dialysate, a wastewater stream
traditionally managed as a disposal challenge. Recent research has
shifted focus toward its potential as a resource within a circular
economy framework, emphasizing water, nutrient, and energy
recovery to enhance sustainability in healthcare.’ Spent dialysate’s
distinct properties make it a promising candidate for valorization,:?
but contaminants like antibiotic resistance genes (ARGS),> per- and
polyfluoroalkyl substances (PFAS),* and microplastics® raise environ-
mental concerns. This review synthesizes the literature on spent
dialysate’s characteristics, ecotoxicological risks, possible treatment
technologies, and resource recovery potential, highlighting opportu-
nities and challenges for sustainable hemodialysis practices.

Review methodology

A systematic review of the literature was conducted to synthesize
current knowledge on the resource recovery potential of spent
dialysate from hemodialysis. The primary objective was to identify
and evaluate technological strategies for its valorization within a
circular economy framework, and to assess their environmental and
economic impacts.

The search was executed across three major scholarly databases:
Scopus, PubMed, and Web of Science. The investigation targeted
English-language articles published between January 2000 and June
2024 to capture the evolution of relevant technologies and policies.
The search strategy utilized a combination of keywords and Boolean
operators to maximize coverage: (“spent dialysate” OR “dialysis
wastewater” OR “hemodialysis effluent”) AND (“circular economy”
OR “resource recovery” OR “valorization” OR “water reclamation” OR
“nutrient recovery” OR “energy recovery”).

Following duplicate removal, 46 unique articles were retained for
screening. The titles and abstracts of these articles were screened for
relevance based on predefined criteria. Studies were included if they
focused on the composition, management, treatment, environmental
impact, or resource recovery pathways of spent dialysate. Articles that
focused exclusively on clinical dialysis techniques without addressing
effluent management were excluded.

The full text of the remaining relevant articles was assessed for
eligibility. To ensure a comprehensive analysis, the reference lists of
these key publications were hand-searched for additional pertinent
sources, a process known as snowballing. This rigorous selection
process resulted in the final inclusion of 15 references that form the
core evidence base for this review.

Nefrologia xx (2025) 501431

The quantitative data presented in this manuscript, including
figures on energy consumption, cost estimates, and potential savings,
are derived from the data reported in this compiled literature. Where
specific calculations are presented, for example struvite production or
CO, savings, they are based on applying these literature-derived
figures to standardized scenarios, as noted in the text.

Composition and ecotoxicological risks

Spent dialysate is characterized by high salinity, moderate levels of
ammonia nitrogen and orthophosphates, low BOD, and minimal
bacterial contamination."> However, its environmental impact is
complicated by emerging contaminants. ARGs, such as erm (36) and
mtrD-02, along with antibiotics like betalactams, fluoroquinolones,
and aminoglycosides, have been detected in dialysis sewage,
highlighting potential risks for the spread of antimicrobial resistance
in wastewater ecosystems.®® Similarly, PFAS compounds such as
PFOA and PFOS have been detected at levels that necessitate stringent
management to mitigate their environmental persistence.* Micro- and
nanoplastics, resulting from equipment wear (e.g., membrane
rupture, bloodline abrasion), further complicate disposal,” acting as
vectors for ARGs and resistant bacteria® (Figs. 1 and 2). Ecotoxico-
logical studies underscore moderate ecological risks. Tests on Daphnia
magna and Euglena gracilis reveal acute EC50 values of 86.91% and
76.90%, respectively, dropping to 25% under chronic exposure,
indicating cumulative toxicity.” High nutrient concentrations risk
eutrophication if untreated, with potential to disrupt aquatic
ecosystems. These findings highlight the need for advanced treatment
to mitigate environmental impacts while enabling resource recovery.

Treatment technologies

The literature identifies two primary treatment approaches for
spent dialysate: membrane-based technologies (RO and nanofiltra-
tion) and electrochemical oxidation. RO and nanofiltration achieve
>95% removal of salinity, pathogens, PFAS, and ARGs, with energy
consumption of 0.5-1.2kWh/m3.%>'%'" Their cost-effectiveness
(OPEX: $0.7-0.75/m>®) and scalability make them preferred for
large-scale hemodialysis facilities.> In contrast, electrochemical
oxidation removes 60-70% of salinity and nitrogen but incurs higher
costs (OPEX: $1.13-1.31/m?>) and is less efficient for demineraliza-
tion.'?'* The choice of technology depends on dialysate composition
and facility priorities, with membrane-based methods favored for
their proven performance and lower operational costs.

Mechanical

Abrasion
Physical wear Degradation Breakdown Failure of Wear on
and tear on due to from ultraviolet dialyzer bloodlines
plastic parts chemical radiation membranes during
exposure treatment

Fig. 1. Sources of micro and nanoplastics in dialysis.
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Fig. 2. The role of microplastics in antibiotic resistance.

Resource recovery opportunities
Water reclamation

RO and NF produce high-quality water suitable for on-site reuse,
directly reducing a facility’s freshwater demand and associated
environmental impact.>'%!! This reclaimed water is ideal for non-
clinical applications such as sanitation and cooling. For a standard 20-
station unit, this translates to saving over 1 million liters of municipal
water annually while concurrently avoiding the emission of
approximately 280 kg of CO,, a saving of 0.28 kg per cubic meter
treated compared to conventional water production.’

Nutrient recovery

Spent dialysate’s nutrient profile, rich in ammonia nitrogen and
orthophosphates, resembles human urine, enabling recovery via
struvite crystallization."'> A 20-chair hemodialysis facility operating
two shifts daily can produce 2.4 kg/day of struvite, sufficient to
fertilize 5 ha of arable land, with a CO, saving of 0.35 kg/kg compared
to synthetic fertilizers.'® This recovered struvite is a valuable slow-
release biofertilizer, with potential revenue streams estimated at
$0.5-$1/kg."® To ensure this value is realized and to align with
circular economy principles, establishing a reliable local market is

100% === == = = = - = ———————

50%

25%

crucial. Furthermore, adopting robust quality assurance protocols is
essential to guarantee product safety and build market confidence;
this includes monitoring for potential contaminants, a standard
practice for recovered materials that is well-documented in the
literature.

Energy recovery

Spent dialysate retains thermal energy (20-25 °C), with global
dialysis units losing an estimated 1600 GWh annually, which is
equivalent to heating 140,000 homes or saving 118 million euros in
fuel costs via heat exchangers, with CO, savings of 0.6 kg/kWh
compared to fossil fuel-based energy.'"'® Applied to a single 20-station
unit, this could represent a recoverable thermal energy potential of
approximately 25-50 MWh/year, depending on climate and opera-
tional hours. MFCs leverage the effluent’s high conductivity to
generate 0.3-0.5 W/m? of electricity.'® These technologies enhance
the sustainability of hemodialysis operations.

Environmental and economic impacts

Adopting a circular economy model for spent dialysate can reduce
environmental impacts by an estimated 30-50% compared to
conventional linear disposal, as illustrated in Fig. 3.'77'° This

Water
Reclamation

Fertilizer
Recovery

Fig. 3. Comparative evaluation of recovered resources use versus new resources use on carbon emissions saving in hemodialysis.
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Fig. 4. Impact of resources recovery from spent dialysate in carbon emission minimization of hemodialysis treatment.

reduction is achieved through multiple pathways: water reclamation
(saving ~0.28 kg CO,/m?), energy recovery (avoiding ~0.6 kg CO,/
kWh), and nutrient recycling via struvite production (saving ~0.35 kg
CO-_,/kg)1 (Fig. 4). A significant additional benefit is the mitigation of
potent methane emissions that would otherwise result from the
anaerobic digestion of organic matter in wastewater, preventing an
estimated 0.48 kg CH,/kg BOD.?*?! Economically, these strategies
translate to net cost reductions of 15-25% for facilities, stemming
from lower utility and waste management expenses and potential
revenue from struvite sales. While the precise figures are literature-
based estimates subject to variation based on local conditions and
technological scale, the compelling synergy of environmental and
economic benefits firmly positions spent dialysate management as a
pioneering model for sustainable healthcare.

Challenges and future directions

Despite its potential, several challenges persist. High initial capital
costs for RO, NF, and energy recovery systems limit adoption,
particularly in smaller facilities and satellite units which lack the
space and capital budgets of large hospital-based centers. Recent
analyses suggest that next-generation polymeric membranes with
antifouling properties could improve the long-term economic
feasibility of closed-loop systems.>®> Regulatory frameworks often
fail to address spent dialysate’s unique composition, creating
uncertainty around the classification of reclaimed water and
recovered products like struvite, and necessitating tailored policies.
The environmental impact of dialysis-derived microplastics and ARGs
remains underexplored, requiring long-term ecotoxicological studies.
Scaling up resource recovery demands specialized infrastructure, staff
training for new operational protocols, and supply chains for struvite
and energy markets. Future research should prioritize: (1) Techno-
economic assessments for different facility sizes and settings; (2)
Long-term ecotoxicological studies on microplastics and ARGs; (3)
Development of standardized regulatory guidelines for spent dialysate
valorization; and (4) Pilot-scale demonstrations to validate opera-
tional feasibility and real-world benefits.

Conclusion

The literature underscores the transformative potential of spent
dialysate as a resource within a circular economy framework.
Advanced treatment technologies like RO and nanofiltration, coupled
with struvite crystallization and energy recovery, enable the
valorization of water, nutrients, and energy, reducing environmental
impacts by 30-50% and generating economic benefits. However,

challenges such as high costs, regulatory gaps, logistical barriers, and
emerging contaminants like microplastics and ARGs highlight the
need for further research and policy support. By addressing these
barriers through targeted research, pilot projects, and collaborative
policy development, spent dialysate can serve as a model for
sustainable healthcare, aligning environmental, economic, and
clinical goals.
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