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Abstract 

Kidney transplantation (KT) is the most effective treatment for end-stage kidney disease. With 

advancements in modern immunosuppression, graft survival rates for standard-risk recipients 

have significantly improved, reaching approximately 95% in the first year, 85% at five years, and 

65% at ten years. However, long-term outcomes remain challenging due to chronic graft loss and 

drug-related toxicities. Immunosuppressive drugs, with narrow therapeutic range of safety and 

efficacy, require drug-monitoring strategies to optimize outcomes. In KT, the standard triple 

maintenance regimen of tacrolimus, mycophenolate mofetil (MMF), and prednisolone is practiced 

and MMF is typically administered as a fixed-dose drug. However, evidence suggests that dosage 

adjustments based on concentration monitoring yield superior clinical outcomes. MMF, an ester 

prodrug of mycophenolic acid (MPA), necessitates area under the concentration curve (AUC) 

monitoring due to its complex pharmacokinetics and an exposure level of 30–60 mg/L.h is 

considered adequate for transplant recipients. However, fixed dosing practices continued, due to 

controversial evidence and lack of familiarity with AUC and monitoring techniques. AUC 

monitoring has also been proposed for tacrolimus, a calcineurin inhibitor (CNI), instead of 

routinely used trough concentration, particularly in "rapid metabolizers" who may experience 

higher peak concentrations and toxicities. To enhance transplant outcomes, a comprehensive 

understanding of AUC and relevance to immunosuppressant exposure is critical. This review will 

primarily focus on MPA AUC exposure in post-kidney transplant patients, explore and explain 

methods for AUC monitoring, and highlight recent developments in tacrolimus AUC monitoring. 
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Key Concepts:    

 Post kidney transplant immunosuppression monitoring  

 Understanding MMF concentration-controlled dosing  

 AUC monitoring concepts  

 Key update on tacrolimus AUC monitoring  

 

Introduction  

Kidney transplantation (KT) offers a superior quality of life for individuals with end-stage kidney 

disease. Recent global data from 98 countries report a median incidence and prevalence of KT at 

14 and 255 per million population, respectively.1 While KT provides significant longevity and 

economic benefits compared to dialysis, successful outcomes are significantly dependent on the 

adequacy of immunosuppression. Post-transplant immunosuppression was first introduced by 

Thomas Earl Starlz in 1963.2 Since then, substantial advancements have improved short-term 

outcomes of KT, particularly through the use of the current "quadruple therapy" regimen 

including induction therapy (basiliximab, antithymocyte globulin) and the maintenance triple 

regimen (comprising tacrolimus, MMF, and prednisolone).3 However, despite these 

advancements, approximately 25% of adult , and 25-38% of paediatric KT recipients suffers graft 

loss and return to dialysis within five years and seven years respectively.4 Over the last decade, 

survival outcomes remained unchanged, and chronic allograft injury continued as a significant 

concern in kidney transplant recipients.5  Recent studies suggest that MMF may serve as a key 

predictor of long-term outcomes.6 However, a persistent debate surrounds its concentration-

controlled dosing (CCD) versus fixed dosing for optimal effectiveness. MMF fixed dosing has 

been associated with variable exposure due to its complex pharmacokinetics, with suboptimal 

exposure increasing the risk of rejections and transplant failure.7,8 Consequently, monitoring 

MMF using the AUC method has been proposed to address these issues. Although CCD has 

demonstrated improved outcomes, the implementation of this approach remains limited due to 

controversial evidence and a lack of familiarity with the AUC monitoring methods. An enhanced 

understanding of MPA exposure and the associated challenge of its monitoring is critical to 

improve transplant outcomes. Similarly for tacrolimus, recent developments indicated AUC 
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monitoring as more accurate measure of drug exposure compared to traditional trough 

concentration monitoring. This review aims to provide clinicians with an overview and insights 

into the evidence for MMF exposure, its pharmacokinetics, associated controversies, monitoring 

strategies, and clinical applicability, along with brief points on tacrolimus in kidney transplant 

recipients. 

Pharmacokinetics and the Need for monitoring 

MMF, an antimetabolite drug, was reintroduced as an immunosuppressive agent for kidney 

transplantation in 1995, after its initial discovery in 1893 as an antibacterial agent by Italian 

physician Bartolomeo Gosio.9 The efficacy of MMF in preventing acute rejection episodes in 

renal allograft recipients was established through randomized, double-blind studies conducted in 

the United States and Europe, followed by a tricontinental study.10-12  MMF is an ester prodrug of 

MPA that selectively and reversibly inhibits inosine monophosphate dehydrogenase (IMPDH), a 

rate-limiting enzyme in the de novo synthesis of guanosine nucleotides. By impeding the synthesis 

of guanosine and deoxyguanosine nucleotides, MMF induces apoptosis in activated T 

lymphocytes, suppresses glycosylation and the expression of adhesion molecules, and decreases 

inducible nitric oxide (NO) production by depleting its cofactor, tetrahydrobiopterin. 

Additionally, MMF suppresses dendritic cell maturation and reduces the expression of interleukin 

(IL)-1, contributing to its targeted immunosuppressive effects.13  

Pharmacokinetics:  

MMF is commonly prescribed orally in a fixed dosage ranging from 600 to 1200 mg/m² in 

children and 1-2 gm/day in adults.14 Following administration, MMF undergoes hydrolysis by 

esterase, achieving peak plasma concentrations of MPA within 60 to 90 minutes. Approximately 

90–95% of the drug is absorbed after oral intake and enters systemic circulation. It has a half-life 

of 12 to 20 hours with both oral and intravenous administration. The small fraction of unbound 

MPA in lymphocytes mediates its immunosuppressive effects. MPA undergoes first-pass 

metabolism in the liver, where uridine 5ʹ-diphosphate glucuronosyltransferases (UGT) metabolize 

MPA into its primary metabolites: mycophenolic acid glucuronide (MPAG), 7-O-MPA-β-

glucuronide, and MPA acyl-glucuronide (AcMPAG).15,16  While MPAG undergoes primarily 

renal clearance, a fraction is excreted into bile via the multidrug resistance protein 2 (MRP-2) 

transporter, where intestinal bacteria convert it back to MPA before reabsorption into the 

circulation. This process, known as enterohepatic cycling (EHC), and it leads to a secondary peak 

in MPA concentration approximately 6–8 hours after oral dosing.17 Also, post-kidney 
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transplantation, there is an alteration in gut microbiota, that reduces EHC. A significant proportion 

of MPAG binds to plasma albumin (~82%) at therapeutic concentrations. In cases of impaired 

renal function, MPAG accumulates and competes with MPA for plasma protein binding, resulting 

in elevated levels of unbound MPA and thus increased pharmacological activity. See Figure 1. 

MPA Pharmacokinetics and the enterohepatic circulation.  

MMF pharmacokinetics contributes to major intra -and inter individual variability and 

unpredictability in its exposure. This is often influenced by multiple factors, such as changes in 

glomerular filtration rate, albumin levels, and concomitant medications, especially in the 

immediate time-period after kidney transplantation. MPA and MPAG protein binding and its EHC 

varies significantly with these parameters and thus result in exposure irregularities. Additionally, 

inconsistency in MPA exposure can be attributed to UGT enzyme gene polymorphisms and 

uptake transporter variability. The first study by Hale et al. in 1998 a randomized, multi-targeted 

approach demonstrated a significant association between MPA AUC exposure and biopsy-proven 

rejections and similar results were shown by other studies18,19 Thus, MPA AUC monitoring is 

crucial to adjust dosage and for effective concentration and improved graft survival as further 

revealed in the next section.  

Clinical evidence on AUC monitoring, Debate, MPA exposure and specific considerations in 

paediatric populations: 

Clinical evidence on AUC monitoring and Debate 

MPA concentrations-controlled dosing using AUC is associated with reduced rejection rates 

compared to fixed dosing, shown by randomized studies as well as by observational data.19,22 

However, a large multicenter European randomized trial in 2008 failed to demonstrate the benefits 

of MPA exposure. The study authors later attributed suboptimal drug exposure and poor outcomes 

to clinician’s reluctance to adjust doses based on monitoring results.20  A systematic review by 

wang et al, also failed to demonstrate clear advantages of MPA concentration monitoring.21 These 

findings were later critiqued by experts who attributed the failure of CCD and the inconsistency 

in study outcomes to the use of a broad therapeutic range and not applying monitoring 

effectively.8,22,23 Table 1. Key Opinion-Forming Studies on MPA AUC and Clinical 

Outcomes.8,18-23 Moreover, trough monitoring has shown a weak to moderate correlation with 

MPA AUC. A very few studies have suggested an association between trough concentrations 

rejection episodes, and the development of donor-specific antibodies (DSAs).25-28 
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Consequently, MPA monitoring has remained a subject of considerable debate due to the varying 

report outcomes, pharmacokinetics variability, practical challenges of AUC monitoring, cost 

burden, and lack of agreement on standard methods of monitoring despite AUC monitoring being 

a likely factor to improve long-term graft survival.  

MPA optimum exposure: 

Following kidney transplantation, MPA target exposure of 30–60 mg·h/L with cyclosporine 

therapy, and a similar target of 40 mg·h/L with tacrolimus therapy, were estimated safe and 

effective as determined by previous studies.25, 29-31 It is important to note that co-administration 

of cyclosporine leads to a 40% reduction in MPA exposure, necessitating dose adjustments to 

achieve the desired concentration, whereas no such effect has been observed with tacrolimus. 32  

The association between MPA exposure and rejection episodes were often inferred from the mean 

exposure in initial period after transplantation in earlier studies. However, AUC exposure early 

after transplant does not accurately reflect the exposure over time due to changes in associated 

co-factors. Shaw et al. demonstrated a 30% to 50% increase in MPA AUC during the first weeks 

after transplantation.31 Later, Van Hest et al. identified a time-dependent change in MPA 

exposure, linked to a reduction in MPA clearance.32  This change was attributed to a combination 

of factors, including improving creatinine clearance, rising albumin levels, increasing hemoglobin 

concentrations, and decreasing cyclosporine levels, particularly during the first six months 

following kidney transplantation. Daher-Abdi et al. analyzed the correlation between longitudinal 

MPA exposure and acute rejection during the first-year post-kidney transplantation using a joint 

modeling approach. The study demonstrated variable MPA exposure over time, with the desirable 

AUC target increasing progressively: 35 mg·h/L around week 1, 37 mg·h/L at month 1, 40 mg·h/L 

at month 3, and 41 mg·h/L after month 6 (p < 0.001).33  Further analysis highlighted the 

importance of longitudinal MPA monitoring and MPA AUC(t) exposure in predicting acute 

rejection, graft loss, and mortality (within the observed exposure ranges), after standardizing for 

CNI exposure.34 Wang et al. provided additional evidence, identifying significantly lower MPA 

exposure (AUC,12h/dose) in kidney transplant recipients during the early post-transplant period 

(days 4–8) compared to 5–10 years post-transplant with fixed dosing (40.83 ± 22.26 mg·h/L vs. 

77.86 ± 21.34 mg·h/L; p < 0.001). 34  This revealed 30–50% lower MPA exposure during the 

immediate post-transplant period than in the later stable state. Longitudinal monitoring of MPA 

exposure post-kidney transplantation has been shown to be beneficial, offering increased accuracy 

and improved outcomes.35,36   
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Variability in MPA exposure with age:  

MPA exposure in the paediatric cohort.  

The efficacy and safety of MMF in paediatric kidney transplantation was established by numerous 

studies soon after the adult trials.37-42  These studies demonstrated comparative tolerability and 

MPA exposure in children with adults. A study by Tonshoff et al determined almost 10-fold 

variability in dose-normalized MPA-AUC(0-12) values after transplanataion.43 Further 

pharmacokinetic model developed by V. Radovanovic et al. demonstrated effect on MPA 

clearance by age, total daily MPA dose, and concurrent therapies.44  Ghio et al., in a longitudinal 

study of 50 kidney transplant recipients aged 2–19 years, assessed the complete pharmacokinetic 

profile (10 time points) on post-transplant days 6, 30, 180, and 360. The study identified AUC as 

a reliable measure of MPA exposure (r = 0.91; p < 0.001), confirming its efficacy and safety.45 

Martial et al. investigated MPA AUC exposure in 39 pediatric kidney transplant recipients, 

comparing two groups: those within three weeks post-transplantation and those beyond 18 months 

post-transplantation. They reported mean AUC values of 29.7 mg·h/L in the early post-transplant 

period (Group 1) and 56.6 mg·h/L in the late post-transplant period (Group 2), despite a lower 

dosage in the latter group (584 mg/m² vs. 426 mg/m²). The study highlighted significant 

variability (36%) in MPA exposure over time, correlating this variability with changes in serum 

creatinine levels in pediatric patients.46  Furthermore, limited samples were determined and studies 

validated algorithms based on an abbreviated pharmacokinetic (PK) profile for the estimation of 

MPA exposure in paediatric cohort.47,48. A recent study by Labriffe et al. analyzed data from 1,051 

pediatric kidney transplant recipients and found that only 50% had their first MPA exposure 

within the recommended range of 30–60 mg·h/L.48  

MPA Exposure in the Elderly Population: A study by Tang et al. demonstrated no significant 

effect on MPA exposure or pharmacokinetics in elderly patients (aged 65 years and above).49 In 

contrast, another study comparing elderly (mean age 63 years) and younger (41 ± 5 years) 

transplant recipients showed lower overall exposure and trough concentrations in the elderly 

group. These conflicting findings highlight the need for more data in this vulnerable population.50 

AUC estimation methods; clinical applicability: 

AUC estimation methods: 

Unlike calcineurin inhibitors, a single trough concentration of MPA does not provide an accurate 

estimation of drug exposure due to the complexities of MPA Pk discussed earlier and 
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consequently, AUC monitoring is recommended. AUC is a crucial measure of drug concentration 

over time, typically determined through blood or plasma samples collected at multiple time 

points.51 See Figure 2. for Area under the concentration curve exposure metrics.  AUC provides 

valuable information for dose adjustment and is calculated using the formula: AUC = Dose / 

Clearance. However, it is generally not implemented in routine clinical practice due to the 

challenges associated with its application, need for multiple blood samples, increased resource 

requirements, and higher costs. Additionally, there is a lack of understanding and consistent 

application of AUC methods among clinicians. Methods of MPA AUC monitoring include 

trapezoid method, multilinear regression, and Bayesian estimation method. The later two methods 

are limited sample approaches and widely used in studies. The trapezoid method (8-12 hours) is 

a standard reference method but requires multiple samples.52 Multilinear regression (MLR) and 

Bayesian estimation (BE) are though limited sampling strategies but have limitations and 

consequently not practiced in transplant clinics. 53, 48.   

Trapezoid method mainly involves calculating AUC by breaking the curve into trapezoids (at 

concentration-time points) and calculating the area for each trapezoid. MLR is a data-driven 

technique that efficiently derives a mathematical function relating a limited number of drug 

concentrations in a dosing interval to the full AUC. Bayesian Methods has three components: (A) 

prior information (prior distribution), it may be from previous trials and reflects the expected 

observation(s) for a specific population, (B) observed patient data, (C) predict individual 

responses, the data are formally turned into statistical knowledge using Bayesian theorem into the 

posterior distribution. See Table 2. AUC and Precision Monitoring Methods advantages and 

disadvantages.  

There is also a recently introduced machine learning method. Machine learning models, such as 

XGBoost, are based on concentration-time profiles derived from population pharmacokinetic 

(POPPK) models. 

For any method, laboratories consistency is required as concentration may varies because of 

analytical methods. MPA concentration measurement are usually done by high-performance 

liquid chromatography (HPLC)-UV or liquid chromatography (LC)-MS which is more accurate 

but few places use immunoassays as an easy implementable and cost saving measures.54  

Clinical applicability: There are substantial evidence linking MPA exposure to rejection 

outcomes, and ongoing controversy likely stems from the complexity involved in AUC 

monitoring and practical challenges in clinical implementation. To overcome these barriers and 
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achieve significant outcomes, limited sampling strategies (LSS) and modern monitoring 

approaches have been proposed.55-60 See Table 3. For emerging evidence of individualized MMF 

dosing. While more than 70-80% data published employed LSS by either MLR and Bayesian 

estimation methods, a simpler and more widespread approach using limited sample trapezoid 

AUC approach may find a better alternative and applicability in transplant clinics. It is important 

to note that statistical approach using computation of mean prediction error (MPE), root mean 

squared prediction error (RMSE) and agreement between newer and standard method, is essential 

for determining predictive accuracy and validating newer monitoring methods. 

Limitations: A traditional TDM AUC based approach has several limitations. In addition to 

practical challenges such as the need for multiple sampling points, increased costs, the 

requirement for specialized pharmacokinetic modelling software, and the necessity to wait for 

steady-state concentration, there is a general lack of clinician awareness regarding AUC methods 

and their optimal use. Furthermore, clear evidence is lacking in elderly populations and in 

longitudinal exposure data for children. More research is also needed on monitoring the exposure 

of enteric-coated MMF, as current evidence remains limited. 

Practical recommendations for routine clinical practice 

The efficacy of MPA monitoring compared to fixed dosing in reducing graft rejection has been 

demonstrated by numerous studies. Based on the available scientific evidence, the following 

suggestions are proposed 

1. MMF is commonly used in combination with either tacrolimus or cyclosporine, with or 

without glucocorticoids and a target MPA AUC₀–₁₂h of 30–60 mg·h/L is considered 

optimal and should be maintained to protect functioning graft. Although a definitive 

relationship between MPA exposure and toxicity has not been established, it is generally 

accepted that MPA AUC exposure should not exceed 60 mg·h/L in stable patients as a 

practical safety measure. In routine practice, daily dose of MMF for adult kidney 

transplant recipients (KTR) is 2 gm and for EC-MMF formulation, a dose of 720 mg is 

considered equivalent to 1 g of MMF. In paediatric KTRs, the currently recommended 

dose ranges from 600 to 1200 mg/m² of body surface area per day, administered in two 

divided doses. 
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2. Guidelines are needed to support and standardize MPA monitoring, particularly within the 

first month and first year after transplantation. Since dose-exposure variation persists long-

term, extended monitoring recommendations are also warranted. 

3. Limited sampling strategies are feasible and should be adopted for AUC estimation to 

reduce the burden of full-profile pharmacokinetic sampling. 

4. Further evidences are  required to determine the applicability of AUC monitoring for 

enteric-coated mycophenolate (EC-MPA) formulations in patients on modern triple 

immunosuppressive regimens. 

5. Age-related considerations: While current data suggest age has no significant impact on 

MPA exposure, more longitudinal data and specific monitoring strategies are needed for 

vulnerable populations, particularly paediatric patients. In the elderly population, further 

evidence is also required to guide dosing and monitoring approaches. 

Tacrolimus: Brief insight on emerging AUC-guided monitoring 

Tacrolimus (TAC, FK506) is the preferred immunosuppressive drug following kidney 

transplantation, chosen over cyclosporine due to its superior efficacy and minimal cosmetic side 

effects.61 However, it is important to note that adverse reactions such as nephrotoxicity, 

neurotoxicity, diabetes, and dyslipidemia are not uncommon, even with routine trough-level 

monitoring. Tacrolimus exerts its effects by binding to the intracellular protein FKBP-12, which 

forms a complex with calcium, calmodulin, and calcineurin. This complex inhibits the 

phosphatase activity of calcineurin, preventing the translocation of nuclear factor of activated T-

cells (NF-AT), thereby inhibiting the formation of lymphokines (such as interleukin-2 and gamma 

interferon) and the activation of T-lymphocytes.62 

A key aspect of tacrolimus metabolism involves the critical enzymes CYP3A4 and CYP3A5. It 

is metabolized in the liver and gastrointestinal (GI) tract by these enzymes.63 The dose-

concentration disparities observed among individuals are influenced by factors such as CYP 

enzyme activities, haematocrit, plasma protein levels, renal function, time post-transplantation, 

and the co-administration of other drugs and food items.64 Allelic variations in the CYP3A5 gene 

are observed in up to 95% of Caucasians and 33% of African Americans.66 Individuals with 

CYP3A5 expressor genotypes exhibit a higher rate of tacrolimus clearance, resulting in lower-

than-desired drug exposure. 

Emerging evidences for tacrolimus exposure using AUC guided dosing:   
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Tacrolimus concentration is commonly monitored through a single sample trough (C0) 

concentration. However, emerging data have led to the recommendation of tacrolimus AUC 

monitoring, particularly in the early period following transplantation, to better assess drug 

exposure.60,65 Studies have shown variable associations between trough concentrations and 

tacrolimus AUC exposure. In some individuals, an AUC three times higher than the normal range 

(75–225 mcg.h/Lå) was observed, even when trough concentrations were within the range of 5–

10 mcg/L, with a corresponding increase in toxicities. Pharmacogenetic variations contribute to 

inter-individual (20%–60%) and intra-individual (10%–40%) variability in tacrolimus exposure.66  

AUC monitoring has proven valuable, demonstrating superior correlation with clinical outcomes 

when using a posteriori Bayesian estimation method, which rely on POPPK models and a limited 

number of blood samples.67 

A minimal AUC 0–12 threshold of 150 ng·h/mL has been recommended to guide dosing for the 

twice-daily tacrolimus formulation in adults. In a prospective study of 80 patients, a higher 

proportion of patients achieved therapeutic target concentrations with computerized dosing during 

the first eight weeks post-transplantation compared to conventional dosing [medians: 90% (95% 

confidence interval [CI], 84–95%) vs. 78% (95% CI, 76–82%), respectively, P < 0.001]. In high-

risk patients, the results were even convincing [medians: 77% (95% CI, 71–80%) vs. 59% (95% 

CI, 40–74%), respectively, P = 0.04].68  A study by Meziyerh et al demonstrated that 3.6% out of 

968 KTRs experienced biopsy-proven acute rejection (BPAR) between years 1 and 3 post-

transplant recipients and recommended target range for Tac-AUC0-12h and C0 at 1 year 75-95 

ng*hour/mL & 5-7 ng/mL respectively. The Tac-AUC0-12h predicted better BPAR and over- or 

underexposure despite adequate Tac-C0.36 Another recent randomized study by Lloberas et al 

validated a population pharmacokinetic (PPK) Bayesian model that incorporated 

pharmacogenetics (CYP3A4/CYP3A5 clusters), age, and hematocrit. Study determined Tac 

starting and subsequent dose adjustments in 90 kidney transplant recipients within 90 days after 

transplants. Bayesian AUC group versus control group (trough): a significantly higher percentage 

of patients achieving the target range (54.8%), less intra-patient variability, less dose 

modifications and a shorter time to reach the target level (5 days) versus control (20.8%) and (10 

days), respectively.69 Woillard JB et al., prospective study of 1325 transplant recipients, 

demonstrated that the AUC/C0 ratio yields low intraindividual variability in stable patients as 

compared to AUC alone and trough concentrations 70 
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The AUC concentrations corresponding to trough levels have been proposed as follows, AUC 0-

12  of  75–140 ng·h/mL for a trough of 3–7 ng/mL, 100–190 ng·h/mL for 5–10 ng/mL, and 180–

270 ng·h/mL for 10–15 ng/mL. For single-dose tacrolimus formulations, the corresponding AUC 

targets with trough levels are 150–275 ng·h/mL for a trough of 3–7 ng/mL, 180–350 ng·h/mL for 

5–10 ng/mL, and 310–475 ng·h/mL for 10–15 ng/mL.68-70 A single-dose tacrolimus formulation 

has recently gained attention to improve patient adherence. A systematic review found no 

significant difference in clinical outcomes or tacrolimus toxicity between single-dose and 

conventional twice-daily dosing.71  

Conclusions:  

Immunosuppression plays a crucial role in the short-term improvement of outcomes for kidney 

transplant recipients. However, benefits in long-term outcome remains limited. A comprehensive 

understanding of the evidence, precision pharmacokinetic monitoring, and AUC-based strategies 

combined with modern approaches is crucial to tackle graft failure and reducing drug-related 

toxicities. In this review, we discuss the evidence surrounding AUC exposure, the controversies 

of MPA monitoring, drug pharmacokinetics, monitoring approaches and newer supportive 

evidence. Although cost burdens and limited resources pose significant barriers in low-income 

countries, gaining an understanding of AUC concepts and modern precision dosing approaches is 

critical. The clinical application of these practices could potentially improve long-term outcomes 

following kidney transplantation. 
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Figure 1. MPA Pharmacokinetics: MPA metabolites and the Enterohepatic Cycle 

[Figure illustrates MPA pharmacokinetics: After MMF oral absorption, MPA is first generated after 

hydrolysis by esterase, it then primarily metabolized in the liver to an inactive glucuronide conjugate, 

MPAG, and to a lesser extent, Ac-MPAG. MPAG which underwent renal clearance. A fraction of these 

excreted into bile and deconjugated by gut microbiota to free MPA and contributing to a secondary plasma 

concentration peak, called EHC. ( MMF= Mycophenolate mofetil, MPA=Mycophenolic acid, MPAG 

=Mycophenolic acid glucuronide,  Ac-MPAG= Acyl-glucuronide, GI: Gastrointestinal tract, EHC= 

enterohepatic circulation)] 
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Figure 2. Area Under the Concentration Curve (AUC) exposure metrics. 
 
[Figure illustrates: AUC metrics- Cmax: Maximum concentration achieved; Tmax: Time taken to achieve 

maximum concentration; Ctrough: Lowest concentration before the next dose; Cmin: Lowest 

concentration; Therapeutic window: Safe and effective drug concentration.  

(Example PK: MMF to MPA and absorption time approx. 30–60 minutes and Tmax of 1–2 hours. The 

elimination T ½ of MPA is 8–16 hours, and the onset of action occurs within 24–48 hours.  

Tacrolimus: Absorption up to 4 hours with Tmax occurring at 1.5–3 hours, an elimination half-life of 8–
12 hours and onset of action within 12–24 hours)]   
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Table 1 Key Opinion-Forming Studies on MPA AUC and Clinical Outcomes 

 

 
  

Study & 
published year  

Patients Methods Design  Results  

Hale and van 
Gelder et al. 
1998-99: 

154 Adult 
kidney 
transplant 
patients 

Multi-target 
Multicentric 
RCT  
 
Trapezoidal 
method 

MMF with 
cyclosporine + 
steroids; 3 target 
MPA AUC₀–₁₂: 
16.1, 32.2, 60.6 
mg·h/L. [21,22] 
 
 

Rejection rates: 27.5% 
(low), 14.9% 
(medium), 11.5% 
(high) 
 

APOMYGRE 

(RCT,  

2007 
Le Meur et al 
2007: 
 

137 adult 
patients (11 
French centres) 
 
 

Bayesian 
estimation with a 
three-point 
sampling 
strategy (20 min, 
1 hr, and 3 hr 
post-dose) 

MMF: fixed dosing 
(FD) of 2 gm/day 
versus target AUC 
40 mg/hr/l. 
 

Treatment failure in 
the FD 48%  
CC group 29%, 
P=0.03; Acute 
rejection (31% vs. 
12%, P=0.01). [37]  

Fixed Dose 
Concentration-
controlled Trial  
2008 

901 adults (60 
children) on 
cyclosporin or 
tacrolimus and 
steroids 
 

Bayesian 
calculation with 
three-time 
points: Before 
(predose 
concentration), 
30, and 120 min 

AUCt0-12 (45 
mg/L.h) 30–60 
mg/L.h with a fixed 
dose of 2gm/day.  
 

No benefit of TDM 
Treatment failure 
(25.6% vs. 25.7%, 
P=0.81) or BPAR 
(14.9% vs. 15.5%, 
P>0.05). 
[39,40] 

Opera RCT  
2011 

247 adult 
transplant 
patients. 
Cyclosporin 
and steroid 
withdrawal at 
day seven post-
transplant. 

Multicentric 
 
Bayesian 
estimation (20 
min, 1 hr, and 3 
hr)  

MMF as 3 g/d for 10 
d, then TCI to a 
target MPA AUCt0-
12 of 40 mg/L.h 
versus 2 g/d 

No benefit in biopsy 
proven acute rejection 
at 3 months. [38]  

Wang et al 2013 Meta analysis 
of 4 RCT (1755 
patients) 

Systemic review AUC and fixed-dose 
MMF  

No difference AUC 
and fixed-dose MMF 
outcome in treatment 
failure (P=0.52). Total 
infections were more 
in the AUC group 
(P=0.01). 

David Metz et 
al.   
2019 

Review of RCT 
& observational 
exposure-
response data  

Literature review Exposure-response 
data using MPA 
AUC and MMF 
dose optimization in 
kidney transplant 
recipients. 
 
 

Observational: 
Consistent & robust 
association AUC & 
rejection. 
Benefit of PK-guided 
MMF dose 
individualisation. 
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Table 2. Methods of AUC monitoring 
 

 

 
 
 
 
 
  

 

Methods of AUC estimation and Modern approaches of drug concentration monitoring  
 
The precision dosing is based on the concept that each patient responds differently to the same 
dose (inter-individual variability), and even same patient may react differently to the same dose 
over time (intra-individual variability). It can be achieved by using newer methods as described 
below.  

The AUC (Area Under the Curve) monitoring measures the total exposure to a drug over a period 
of time 

 
Methods AUC  Advantages  Disadvantages  

Trapezoid method  Easy to calculate 
Most accurate method & 
 Often used as a reference 
gold standard Method  
 

Requires multiple samples,  
Increased cost,  
Time consuming  
Inconvenient   
 

The multilinear 
linear regression 
(MLR) method 

Statistical equations, 
easily done based on 
limited samples strategies 

Can give false positive associations  
Exact time points  MPA estimation  
Limited to tested population.  

 
Bayesian 
estimation  
 
 
 

Limited samples  
Increased accuracy,  
Can determine first dose 

Requires specialized PK modeling software,  
Extra time to extract and input data and 
interpret output.  
Requires TDM specialists and/or clinical 
pharmacologists,  
Bayesian dosing software programs 
DoseMeRx, Best Dose and ClinCalc etc 

 
Machine learning  
 

Allow computers to 
undertake complex tasks. 

 Limited availability to large databases of 
concentration vs. time profiles.  
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Table 3. Emerging evidence of individualized MMF dosing  
 

 
 

Study  Method Aim  Results 
Sobiak J et al 
2021  

Systematic review  
27/55 LSS studies of 
adult kidney 
transplantation  

AUC exposure determined 
using MLR based LSS  
Critical time points assessed 
 

Best points of estimation 
for and adult 
transplantation: C0 C0.5 
C1 C4 and C0 C1 C2 C4.  
 

Labriffe, M et al 

2023  

Retrospective data  
4051 dose adjustment 
requests, (1051 
paediatric patients)  

Bayesian estimators. Using 
T20 min, T1 h, and T3 h are the 
limited sampling strategies  
 
AUC exposure determination  

1st mns post KTP: 50% 
AUCs in the target range. 
Under -over-exposed by 
39% and 3% in 1st and 
30% and 20% in 2nd & 3rd 
months.  
 

Meziyerh et 
al.2023  

Randomised study  
968 adult transplant 
recipients, long term 
impact  

Tac AUC  
75-95 ng*hour/mL 
MPA exposure 30-60 mg.h/l 

3.6% biopsy proven 
rejection between 1st  and 
3rd  year post transplant.  

Villeneuve et al 
2024  
 
  

Retrospective study  
341 KTRs in study 
group (precision 
dosing) and the 392-
control group  

Bayesian estimates for AUC 
20 min, 1 hr and 3 hr  
AUC target 45 versus control 
group (fixed dosing)  

At 3 years, rejection-free 
survival 91.2% and 80.6% 
(P < 0.001) and the 
cumulative incidence of 
rejection 5.08% vs. 12.7% 
per patient × year (hazard 
ratio = 0.49 (0.34, 0.71), P 
< 0.001) 


