
Nefrologia xx (2025) 501408

Revista de la Sociedad Española de Nefrología

journal homepage: www.revistanefrologia.com

Original article

IsorhynchophyllineQ1 protects against ferroptosis in diabetic nephropathy

by activating Nrf2
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Background: Diabetic nephropathy (DN) is a life-threatening complication of diabetes mellitus (DM) and the

leading cause of end-stage renal disease. Ferroptosis, a novel iron-dependent mode of cell death, has been

identified to participate in the pathogenesis of DN. Isorhynchophylline (IRN) is a tetracyclic indole oxide

alkaloid present in Uncaria rhynchophylla (Rubiaceae), which shows protective effects against diabetic

encephalopathy and acute kidney injury. Our study intends to determine whether IRN ameliorates DN

progression through inhibiting ferroptosis.

Methods: The db/db diabetic mice and high glucose (HG)-stimulated human kidney tubular epithelial HK-2

cells were used to explore the potential therapeutic value of IRN in vivo and in vitro. Blood glucose levels, body

weight, kidney weight, serum creatinine (SCr), blood urea nitrogen (BUN), and albumin-to-creatinine ratio

(UACR) were detected to assess diabetic symptoms and renal functions in db/db mice. Hematoxylin–eosin

(H&E) and periodic acid-Schiff staining (PAS) staining were performed to observe renal pathohistological

changes in diabetic mice. Iron contents as well as malondialdehyde (MDA) and glutathione (GSH) in mouse

tissue homogenates and HK-2 cell supernatants were examined to assess iron accumulation and oxidative

stress. The levels of ferroptosis-related proteins and Nrf2/HO-1 signaling-related proteins as well as Nrf2

nuclear translocation in mouse renal tissues and HK-2 cells were detected by western blotting and

immunofluorescence staining.

Results: IRN administration alleviated diabetic symptoms and improved renal functions in diabetic mice. IRN

mitigated renal histologic damage, including glomerular hypertrophy, mesangial matrix accumulation,

capillary basement membrane thickening, and thylakoid stroma expansion in diabetic mice. IRN treatment

inhibited ferroptosis in both diabetic mice and HG-induced HK-2 cells by reducing iron content and MDA

levels, elevating GSH levels, upregulating the protein levels of FTH-1, GPX4, and SLC7A11, and

downregulating the protein levels ofTFR-1 and NCOA4. Mechanistically, IRN treatment enhanced Nrf2

and HO-1 protein levels and Nrf2 nuclear translocation in renal tissues of diabetic mice and HG-exposed HK-2

cells.

Conclusion: IRN plays a renoprotective role in DN by suppressing ferroptosis, which might be ascribed to the

Nrf2/HO-1 pathway activation, highlighting the potential therapeutic application of IRN for DN treatment.

Introduction

Q3 Due to unhealthy lifestyles and the growing prevalence of obesity,

the global prevalence of diabetes mellitus (DM) is projected to

gradually rise, which will bring medical and economic burdens.1

Diabetic nephropathy (DN), as a significant microvascular complica-

tion of DM, can cause irreversible damage to the kidneys.2 DN is the

leading cause that contributes to the occurrence and development of

end-stage renal disease (ESRD), which is responsible for about half of

ESRD cases.3 The golden standard for the diagnosis of DN is renal

biopsy, and the pathological characteristics include glomerular

basement membrane thickening, glomerular hypertrophy, mesangial

expansion, and glomerular sclerosis.4 Currently, blocking the renin–

angiotensin–aldosterone system (RAAS) is the first recommended

treatment option for patients with DN in addition to controlling blood

pressure and blood glucose.5 Nevertheless, the application of specific

inhibitors of the RAAS in the clinic is not satisfying since they fail to
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reverse or completely prevent the progression of DN to ESRD.6Hence,

developing novel renoprotective drugs to prevent or delay the onset of

DN is extremely critical, which can help to address a major public

health problem.

The pathogenesis of DN is complicated. Recently, a new form of

regulated cell death, known as ferroptosis, has come into the field of

medical research.7 Ferroptosis is driven by iron-dependent lipid

peroxidation and is distinct from other forms of cell death in

morphology and biochemistry.8 The essence of ferroptosis is that the

depletion of glutathione (GSH) and the decrease in glutathione

peroxidase 4 (GPX4) activity results in the oxidation of lipids by

divalent iron ions to produce reactive oxygen species (ROS), which

triggers the onset of ferroptosis.9 The process of ferroptosis is

accompanied by the accumulation of large amounts of iron ions and

ROS. Accumulating evidence has suggested that abnormal ferroptosis

is closely related to the development of diabetic complications

including DN.10 The persistent hyperglycemic environment leads to

iron overload, which induces ROS overproduction, oxidative stress,

and eventually ferroptosis.11 Multiple studies have demonstrated that

inhibiting ferroptosis slows DN progression in various cellular and

animal models.12 Nrf2 is a key transcriptional factor responsible for

modulating the redox and antioxidant genes and thereby playing a

pivotal role in the anti-oxidative stress defense system.13 In addition,

Nrf2 also prevents lipid peroxidation and inhibits ferroptosis by

regulating GSH and GPX4 expression.14 Nrf2 depletion has been

identified to cause excessive production and deposition of iron

contents in tissues and organs.15 Accordingly, upregulating Nrf2 is a

promising strategy to repress ferroptosis and oxidative stress and

delay DN progression.16

Over the past decades, Chinese medicine therapies have exhibited

unique advantages in preventing and treating clinical-stage DN.17

Either the use of Chinese herbal medicines alone or their combined use

with chemical drugs helps to reduce proteinuria and improve renal

function in DN patients.18 More importantly, increasing herbal plant-

derived natural compounds have been discovered to prevent and treat

DN through modulating ferroptosis.19 Isorhynchophylline (IRN) is a

tetracyclic indole oxide alkaloid extracted from Uncaria rhynchophylla

(Rubiaceae).20 Modern pharmacological researches suggest that IRN

possesses various biological activities, such as neuroprotection, anti-

inflammation, anti-oxidative, anti-proliferation, and anti-hyperten-

sion effects.21,22 IRN has been used in the treatment of cardiovascular

and neurological diseases such as hypertension, numbness, convul-

sions, lightheadedness, arrhythmia, amnesia brachycardia, amnesia,

and vascular dementia.23 Additionally, IRN was reported to improve

insulin homeostasis and alleviate cognitive impairment in diabetic

encephalopathy, a DM-induced central diabetic neuropathy, through

stimulating sXBP1 nuclear translocation.24 IRN upregulates Tollip to

attenuate oxidative stress and mitochondrial damage, thereby

ameliorating paraquat-induced acute kidney injury.25 However,

whether IRN plays a protective role in DN remains unknown.

Our research intends to determine the beneficial effects of IRN on

DN progression and delineate the underlying mechanism. Given that

Nrf2-mediated ferroptosis plays a central role in DN development, we

hypothesized that IRN may exert its renoprotective effects on DN by

inhibiting ferroptosis through upregulation of Nrf2. Our results may

provide a theoretical basis for the potential of IRN as a therapeutic

agent for DN.

Materials and methods

Animal experiments

Male C57BLKs/J db/m and db/db mice (8-week-old) were

provided by Nanjing Junke Bioengineering (Jiangsu, China). All

animal procedures were authorized by the Animal Ethics Committee

of The Hospital. After 2 weeks of adaptive rearing under a 12:12 h

light–dark cycle (humidity, 45–55%; temperature, 22–24 °C), the

mice were arbitrarily assigned into the db/m, db/m+IRN, db/db, db/

db+IRN, and db/db+Fer-1 group (n= 6/group). IRN (purity ≥98%;

#SI8310; Solarbio, Beijing, China) was suspended in 0.5% sodium

carboxymethyl cellulose (CMC-Na; #HY-Y0703; MedChemExpress,

Shanghai, China), and then given to the mice in db/m+IRN and db/

db+IRN groups at a dose of 40 mg/kg through oral gavage for

12 weeks (once daily for 5 consecutive days 1 week), while the same

volume of 0.5% CMC-Na was given to the mice in db/m and db/db

groups for the same time. The ferroptosis inhibitor ferrostatin-1 (Fer-

1) (purity ≥98%; #CSGC10380; Chemstan, Wuhan, China) was

dissolved in 1% dimethyl sulfoxide (DMSO; #abs9185; Absin,

Shanghai, China) and then injected intraperitoneally into the mice

in the db/db+Fer-1 group at a dose of 5 mg/kg for 12 weeks (once

daily for 5 consecutive days 1 week). The dosages of IRN24 and Fer-

126,27 were selected according to the previous studies. After 12 weeks

of administration, the blood glucose and body weight of mice were

measured, and the mice were separately placed in metabolic cages to

obtain 24 h urine. Afterwards, the mice were humanely euthanized

with isoflurane, and blood samples from the left ventricle were

collected for biochemical examination. Besides, the kidneys were

rapidly dissected, one fixed in formalin for histological evaluation,

whereas the other preserved at −80 °C for the homogenization

process.

Biochemical analysis

HemoCue B-Glucose kit (HemoCue AB, Angelholm, Sweden) was

used to measure the fasting blood glucose concentration of mice. An

automatic biochemical analyzer (Hitachi7060, Tokyo, Japan) was

employed to detect the concentrations of serum creatinine (SCr),

blood urea nitrogen (BUN), urinary albumin, and urinary creatinine.

Urinary albumin-to-creatinine ratio (UACR) was calculated to

indicate urine albumin excretion.

Histopathological staining

The kidney tissues were fixed with 4% paraformaldehyde

overnight, followed by dehydration with gradient alcohol, washing

with phosphate-buffered saline (PBS), paraffin-embedding, and

cutting into 5 μm thick sections. After dewaxing and rehydration,

the sections were separately processed for hematoxylin–eosin (H&E;

#mlsw-1249; mlBio, Shanghai, China) and periodic acid-Schiff

staining (PAS; #C0142M; Beyotime, Shanghai, China) staining to

observe histopathological changes. For H&E staining, the sections

were stained with hematoxylin for 10 min and eosin for 5 min. For

PAS staining, the sections were incubated with 0.1% periodic acid for

10 min and Schiff’s reagent for 17 min. After washing in tap water, the

samples were counterstained with hematoxylin for 2 min. Lastly, the

stained samples were cleared in xylene, sealed with neutral balsam,

and observed under a microscope (Zeiss, Germany). Slices stained

with H&E revealed the glomerular size and the degree of glomerular

hypertrophy, and PAS staining revealed the expansion of the

mesangial matrix and the damage degree of the renal tubule.

Cell culture and treatment

Human kidney tubular epithelial cells (HK-2) were acquired from

Procell (#CL-0109; Wuhan, China) and cultured at 37 °C and 5% CO2

in DMEM/F12 medium (#PM150310B; Procell) containing 1%

antibiotics (penicillin/streptomycin) and 10% fetal bovine serum

(FBS). To construct the cellular model of DN, HK-2 cells were

incubated in a high-glucose medium (HG; 30 mM glucose) for 48 h,

with a normal-glucose medium (NG; 30 mM glucose) and a high-

mannitol medium (HM; 5.6 mM glucose combined with 24.4 mM

2
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mannitol) as the controls. For treatment groups, HK-2 cells were

incubated in a high-glucose medium containing IRN at different

concentrations (5, 10, 25, or 50 μM) or Fer-1 (1 μM) for 48 h.

CCK-8 assay

HK-2 cells were seeded (3,000 cells/well) in 96-well plates and

treated as described above. Forty-eight hours later, CCK-8 solution

(10 μL; #C4018; Warbio, Nanjing, China) was placed into each well

using a pipette tip, followed by another 2 h incubation. Lastly, cell

viability was determined by detecting the absorbance at 450 nm with

a microplate reader (Bio-Rad, USA).

Measurement of iron contents and MDA and GSH levels

Ten milligrams of mouse renal tissues were homogenized by a

tissue homogenizer (TissueRuptor, Qiagen, Hilden, Germany). HK-2

cells were homogenized by an ultrasonic cell pulverizer (Beyotime)

and centrifuged for 10 min to obtain the supernatant. Iron, MDA, and

GSH levels in tissue homogenates and cell supernatants were

respectively examined using the Iron Assay Kit (#KA0814; AmyJet,

Wuhan, China), the Lipid Peroxidation MDA Assay Kit (#K084;

FineTest, Wuhan, China), and Micro Reduced GSH Assay Kit

(#BC1175; Reanta, Beijing, China) as directed by the manufacturer.

The results were finally analyzed by a microplate reader at the

corresponding wavelength (593 nm for iron, 532 nm for MDA, and

412 nm for GSH).

Western blotting

Mouse renal tissues and HK-2 cells were homogenized in RIPA lysis

buffer (#LM-609; LAMI Bio, Shanghai, China) and then centrifuged at

12,000 g for 5 min at 4 °C to harvest the supernatant. After

determining the protein concentration using the bicinchoninic acid

assay kit (#AR1189; Boster, Wuhan, China), 40 μg protein samples

were resolved by electrophoresis on 10% SDS-PAGE and transferred

onto polyvinylidene fluoride membranes. The membranes were

subjected to 60 min blockage with 5% non-fat milk, followed by

overnight incubation on a shaker at 4 °C with primary antibodies

against SLC7A11 (#AF7992; Beyotime), GPX4 (#AF7020; Beyotime),

TFR-1 (#AF8136; Beyotime), FTH-1 (#FNab10519; FineTest),

NCOA4 (#A04368-3; Boster), Nrf2 (#AF7623; Beyotime), HO-1

(#FNab03937; FineTest), and β-actin (#AF5003; Beyotime) diluted to

1:1000 and 1 h incubation at 25 °C with HRP-labeled IgG secondary

antibody (#A0208; Beyotime) diluted to 1:1000. After that, the

membranes were developed with an enhanced chemiluminescence

reagent (#P1010; Applygen, Beijing, China). Image-Pro Plus 6.0

software was utilized to quantify the relative gray intensity of each

band, with β-actin as an internal reference.

Immunofluorescence staining

HK-2 cells were incubated on coverslips in 35 mm dishes. After

washing with PBS and fixation with 4% paraformaldehyde for 20 min,

cells were permeabilized with PBS containing 0.5% Triton X-100 for

10 min and sealed with 3% bovine serum albumin for 60 min.

Thereafter, cells were probed with the Nrf2 primary antibody

(#abs130481; 1:100; Absin) at 4 °C overnight and fluorescently

labeled IgG secondary antibody (Alexa Fluor 647; #A0468; 1:500;

Beyotime) for 60 min at indoor temperature protected from light. The

nucleus was stained with DAPI (#HXSJ-021134; JISSKANG, Qingdao,

China) for 10 min. The fluorescence signals were finally viewed under

a confocal laser scanning microscope (Nikon, Japan) and quantified

with Image-Pro Plus 6.0 software.

Statistical analysis

All statistical analyses were carried out using SPSS (version 20,

IBM Corp, Armonk, NY, USA). Data are presented as mean ± standard

deviation of at least three experimental repeats conducted indepen-

dently. Comparisons between two or more groups were analyzed

through Student’s t-test or one-way ANOVA followed by the

Bonferroni post hoc test. p-Value <0.05 were regarded statistically

significant in all analyses.

Results

IRN ameliorates renal injury in diabetic mice

The influence of IRN on DN progression in type 2 diabetes db/db

mice was investigated. Diabetic db/db mice had markedly increased

blood glucose levels, body weight, and kidney weight compared with

control db/m mice, which however, were notably reduced after IRN

treatment. Similarly, Fer-1 treatment remarkably attenuated body

weight and kidney weight but did not significantly affect the blood

glucose level of diabetic mice (Fig. 1A–C). Next, biochemical analysis

was performed to estimate the levels of renal function indexes. As

expected, SCr, BUN, and UACR levels were prominently higher in db/

db mice than in db/m mice. Intriguingly, both IRN and Fer-1

treatment notably reduced SCr, BUN, and UACR levels in diabetic

mice (Fig. 1D–F). To be mentioned, IRN administration exerted no

significant effects on body and kidney weight as well as biochemical

parameters in db/m mice (Fig. 1A–F). In addition, the renal tissues of

mice were subjected to H&E and PAS pathological staining. It was

observed that db/db mice exhibited obvious histologic signs of renal

damage, such as glomerular hypertrophy, mesangial matrix accumu-

lation, capillary basement membrane thickening, and thylakoid

stroma expansion. Nevertheless, both IRN and Fer-1 treatment partly

relieved the above renal pathological changes (Fig. 1G and H).

Collectively, these findings demonstrated that IRN dramatically

mitigated diabetes-related renal injury and dysfunction in db/db

mice.

IRN inhibits ferroptosis in diabetic mice

Next, whether IRN affects ferroptosis in diabetic mice was

assessed. The iron content of kidney tissues was noticeably elevated

in db/db mice versus db/m mice, which however, was reduced after

both IRN and Fer-1 treatment (Fig. 2A). The levels of lipid

peroxidation product MDA and anti-oxidant GSH in mouse renal

tissues were detected to evaluate oxidative stress. As depicted in

Fig. 2B and C, MDA levels were considerably higher while GSH levels

were lower in the kidney tissues of db/db mice than in those of db/m

mice. Nevertheless, both IRN and Fer-1 treatment reversed the

increment in MDA levels and decrement in GSH levels in db/db mice.

Moreover, the levels of ferroptosis-related proteins in mouse kidney

tissues were examined through western blotting, which revealed that

SLC7A11, GPX4, and FTH-1 protein levels were weakened and TFR-1

and NCOA4 protein levels were enhanced in db/db mice versus db/m

mice. Both IRN and Fer-1 treatment overturned the changes in the

levels of these proteins in db/db mice (Fig. 2D–I). Overall, IRN

alleviated ferroptosis and oxidative stress in the kidneys of db/db

mice.

IRN curbs HG-induced HK-2 cell injury and ferroptosis

Based on the CCK-8 assay, we discovered that IRN had significant

cytotoxicity against HK-2 cells at 100 μM, while IRN at concentrations

lower than 50 μM exhibited no marked effect on HK-2 cell viability

(Fig. 3A). HG-stimulated HK-2 cells were then treated with IRN (5, 10,
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25, or 50 μM), and we found that IRN rescued HG-induced decline in

HK-2 cell viability, with 25 μM showing the best improvements

(Fig. 3B). Besides, HG caused a substantial elevation in iron content

and MDA levels and a decline in GSH levels in HK-2 cells, which

however, were counteracted after receiving IRN or Fer-1 treatment

(Fig. 3C–E). What’s more, as corroborated by western blotting, both

IRN and Fer-1 treatment abrogated HG-induced decrement in

SLC7A11, GPX4, and FTH-1 protein levels and increment in TFR-1

and NCOA4 protein levels in HK-2 cells (Fig. 3F–K). To sum up,

IRN repressed HG-induced ferroptosis and oxidative stress in HK-2

cells.

IRN activates the Nrf2/HO-1 signaling in db/db mice and HG-treated HK-

2 cells

Finally, we explored the mechanism by which IRN protects against

ferroptosis in DN. As revealed in Fig. 4A and B, Nrf2 and HO-1 protein

levels were prominently lower in the kidney tissues of db/db mice

4
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[(Figure_1)TD$FIG]

Figure 1. IRN ameliorates renal injury in db/db mice. (A–F) Measurement of blood glucose levels, body weight, renal weight, serum creatinine (SCr) levels, blood urea

nitrogen (BUN) levels, and urinary albumin creatinine ratio (UACR) in db/m and db/db mice treated with vehicle, IRN, or Fer-1. (G and H) Representative H&E and PAS

staining images showing pathological changes in mouse renal tissues. In H&E staining, black arrows indicate glomerular hypertrophy, red arrows indicate renal tubule

atrophy, and blue arrows indicate inflammatory cell infiltration. In PAS staining, red arrows indicate glomerular basement membrane thickening, blue arrows indicate

thickening of the basement membrane of the renal tubules, and black arrows indicate thickening of the basement membrane of the renal capsule. Scale bar: 50 μm. Results

are presented as the mean ± SD of 6 mice. ***p< 0.001 versus db/m; ##p< 0.01, ###p< 0.001 versus db/db.
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than in those of db/m mice. Conversely, both IRN and Fer-1

administration enhanced Nrf2 and HO-1 protein levels in db/db mice.

Consistent with the in vivo results, HG-induced reduction in Nrf2 and

HO-1 protein levels in HK-2 cells was offset by both IRN and Fer-1

treatment (Fig. 4C and D). The immunofluorescence results further

proved that both IRN and Fer-1 treatment promoted Nrf2 expression

and nuclear translocation in HK-2 cells (Fig. 4E and F). Thus, IRN

stimulated the Nrf2/HO-1 signaling activation in cellular and animal

models of DN.

Discussion

As a primary cause of ESRD, DN has high morbidity and mortality,

which can bring severe health damage and pose a huge economic

burden on human society. The efficacy of the existing treatment

therapies, mainly oral administration of hypoglycaemic and ACEI or

ARB antihypertensive drugs and subcutaneous insulin injection, is

unsatisfactory.28 Increasing natural herbs and their bioactive

ingredients have been revealed to be beneficial in the treatment

and management of DN.29 IRN, as the major active component of U.

rhynchophylla, exhibits significant protective effects against a wide

range of diseases.30,31 The present study evaluated the therapeutic

effects of IRN against DN in both cellular and animal models. We

discovered that IRN improved kidney functions by attenuating blood

glucose levels, body and kidney weight, and SCr, BUN, and UACR

levels in db/db mice. Histological examination corroborated the

beneficial effects of IRN. IRN treatment ameliorated ferroptosis and

oxidative damage in db/db mice and HG-stimulated HK-2 cells, which

might be attributed to the Nrf2/HO-1 pathway activation.

Long-term hyperglycemia prompts the body to produce a large

number of oxygen free radicals, inducing a large accumulation of ROS,

5
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Figure 2. IRN inhibits ferroptosis in db/db mice. (A–C) Examination of iron content, MDA levels, and GSH levels in mouse renal tissues. (D–I) Evaluation of SLC7A11,

GPX4, TFR-1, FTH-1, and NCOA4 protein expression in mouse kidney tissues through western blotting and densitometric analysis of the bands. Results are presented as the

mean ± SD of 6 mice. ***p< 0.001 versus db/m; ###p< 0.001 versus db/db.
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Figure 3. IRN curbs HG-inducedHK-2 cell injury and ferroptosis. (A) Detection of the cytotoxicity of IRN against HK-2 cells through CCK-8 assay. *p< 0.05. (B) Assessment

of HK-2 cell viability after treatment with normal glucose, normal glucose + mannitol, high glucose, or high glucose + IRN (5, 10, 25, or 50 μM) by CCK-8 assay. (C–E)

Measurement of iron content, MDA levels, and GSH levels in HK-2 cells. (F–K) Estimation of SLC7A11, GPX4, TFR-1, FTH-1, and NCOA4 protein levels in HK-2 cells via

western blotting and densitometric analysis of the bands. Results are presented as the mean ± SD of three independent experiments. ***p< 0.001 versus NG; #p< 0.05,

##p< 0.01, ###p< 0.001 versus HG.
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which causes oxidative damage to the body’s intracellular DNA.

Abundant evidence has confirmed that ferroptosis, a type of

regulatory cell death caused by iron-catalyzed and ROS-induced

lipid peroxidation, is implicated in the progression of DN.32GPX4 is an

antioxidant enzyme that can neutralize lipid peroxidation and protect

cell membrane fluidity.33Upregulating GPX4 curbs lipid peroxidation

and inhibits ferroptosis by reducing cytotoxic lipid hydroperoxides (L-

OOH) to their corresponding alcohols (L-OH).34 Downregulation of

SLC7A11 can indirectly attenuate GPX4 activity through restraining

the cysteine metabolic pathway.35 TFR1, also known as TFRC, is an

7
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Figure 4. IRN activates the Nrf2/HO-1 pathway in db/db mice and HG-stimulated HK-2 cells. (A and B) Determination of Nrf2 and HO-1 protein levels in db/m and db/db

mice administrated with vehicle, IRN, or Fer-1 through western blotting and densitometric analysis of the bands. Results are presented as the mean ± SD of 6 mice.

***p< 0.001 versus db/m; ###p< 0.001 versus db/db. (C and D) Evaluation of Nrf2 and HO-1 protein levels in HK-2 cells following treatment with normal glucose,

normal glucose + mannitol, high glucose, or high glucose + IRN (25 μM) by western blotting and densitometric analysis of the bands. (E and F) Representative

immunofluorescence staining images showing Nrf2 expression and nuclear translocation in HK-2 cells and quantitative analysis of Nrf2 fluorescence intensity. Scale bar:

50 μm. Results are presented as the mean ± SD of three independent experiments. ***p< 0.001 versus NG; ###p< 0.001 versus HG.
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essential membrane protein that modulates intracellular iron

transport.36 The main physiological function of TFR1 is to bind to

transferrin and mediate iron uptake through endocytosis, providing

an increased flux for the overaccumulation of intracellular Fe2+.37

Decreased or aberrant expression of TFR1 leads to iron deficiency in

cells, while excess ironmay catalyze ROS and damage biomolecules.38

Yasumura et al. reported that renal fibrosis was reduced in

heterozygous TFR-1-deficient (TFR-1+/−) diabetic mice compared

with wild-type mice.39 FTH-1, as ferritin heavy chain, is degraded in

the autophagic lysosome, followed by the rapid release of Fe2+, which

results in cellular iron overload and thereby promotes ferroptosis.40

The process of ferritin degradation is mediated by NCOA4, a selective

cargo receptor of ferritin. NCOA4-dependent autophagy is defined as

ferritinophagy and leads to increased intracellular iron levels and

Fenton reaction, which subsequently causes excessive lipid peroxida-

tion to induce cell death.41 Previously, multiple herbs and their

derived natural compounds and extracts have been shown to possess

anti-ferroptosis properties and participate in delaying the progression

of DN.42,43 Importantly, IRN was revealed to protect neuronal cells

from ferroptosis after intracerebral hemorrhage through regulating

the miR-122-5p/TP53/SLC7A11 pathway.44 Herein, our results

revealed that IRN treatment reduced iron deposition and MDA levels

and enhanced GSH levels in db/db mice and HG-induced HK-2 cells.

Additionally, IRN upregulated SLC7A11, GPX4, and FTH-1 protein

levels and downregulated TFR-1 and NCOA4 protein levels, suggest-

ing the inhibition of IRN on ferroptosis under hyperglycemia

conditions.

Nrf2 is a pivotal transcription factor involved in modulating

multiple biological processes, including antioxidant response, immu-

nity, inflammation, unfolded protein response, autophagy, heme and

iron metabolism, lipid metabolism, amino acid metabolism, and drug

detoxification.45 Several studies have found that patients with DN had

markedly lower levels of circulating Nrf2 than healthy controls.46

More serious diabetic symptoms, enhanced mesangiolysis, and

intensified interstitial renal fibrosis and renal inflammation can be

observed in Nrf2-knockout Akita diabetic mice compared with mutant

control mice.47 In contrast, activation of Nrf2 delays the progression

of DN through upregulating the levels of HO-1 and NQO-1, the Nrf2

downstream antioxidant enzymes.48 Besides, a large body of studies

indicate that Nrf2 is a crucial regulator of ferroptosis.49 Many target

genes of Nrf2 have been confirmed to participate in preventing lipid

peroxidation and modulating cellular iron homeostasis.50 New

evidence suggests that enhancement in Nrf2 expression contributes

to suppressing ferroptosis and in turn mitigating renal damage in

diabetic mice, while Nrf2 knockdown enhances the sensitivity of HK-2

cells to ferroptosis under hyperglycaemic conditions in vitro.51 Till

now, several natural compounds have been identified to hinder DN

progression by restraining Nrf2-mediated ferroptosis. For example,

Feng et al. disclosed that the flavonoid quercetin exhibited

nephroprotective effects in diabetic db/db mice and HG-stimulated

HK-2 cells by suppressing ferroptosis through activating the Nrf2/HO-

1 signaling.26 Jin and Chen clarified that umbelliferone repressed

oxidative stress and ferroptosis in db/db mice and HG-treated HK-2

cells by upregulating Nrf2 and HO-1 expression.52 Yu et al. discovered

that leonurine inhibited ferroptosis in a high-fat diet and streptozo-

tocin-induced DN mice and HG-induced human umbilical vein

endothelial cells through increasing Nrf2-mediated GPX4 expres-

sion.53 Previously, IRN was reported to prevent cardiac hypertrophy

inmice by stimulating the Nrf2 nuclear translocation.54 IRN treatment

improves the paraquat-triggered oxidative damage in the renal cortex

of acute kidney injury rat models by increasing Nrf-2, NQO-1, and HO-

1 levels.25 Similarly, current research indicated that IRN treatment

upregulated Nrf2 and HO-1 protein levels and promoted Nrf2 nuclear

translocation in DN cellular and animal models.

Collectively, our study demonstrated that IRN had renoprotective

effect against DN by inhibiting ferroptosis and oxidative stress, which

might be linked with the Nrf2/HO-1 pathway activation. Our study

might provide a vital experimental basis for the development of IRN as

a therapeutic agent for DN treatment in the near future. However, the

main weakness of this study lies in the lack of further experiments to

validate whether inhibition of the Nrf2/HO-1 signaling pathway will

abrogate the protective effects of IRN against renal damage and

ferroptosis in DN. In future investigations, we can verify that the

renoprotective and anti-ferroptotic effects of IRN in DN depend on the

Nrf2/HO-1 pathway activation through the use of Nrf2 inhibitor

ML385 or genetic knockdown of Nrf2.
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